
 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula Computer Science &

Engineering, VI-Semester CSE-405 [Operating System]

Topic Covered

Process Management

Introduction of Process Management

Program vs Process

A process is a program in execution. For example, when we write a program in C or C++ and

compile it, the compiler creates binary code. The original code and binary code are both

programs. When we actually run the binary code, it becomes a process.

A process is an „active‟ entity, as opposed to a program, which is considered to be a „passive‟

entity. A single program can create many processes when run multiple times; for example,

when we open a .exe or binary file multiple times, multiple instances begin (multiple

processes are created).

What does a process look like in memory?

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

Text Section: A Process, sometimes known as the Text Section, also includes the current

activity represented by the value of the Program Counter.

Stack: The Stack contains the temporary data, such as function parameters, returns addresses,

and local variables.

Data Section: Contains the global variable.

Heap Section: Dynamically allocated memory to process during its run time.

Refer this for more details on sections.

Attributes or Characteristics of a Process

A process has following attributes.

1. Process Id: A unique identifier assigned by the operating system

2. Process State: Can be ready, running, etc.

3. CPU registers: Like the Program Counter (CPU registers must be saved and

restored when a process is swapped in and out of CPU)

5. Accounts information:

6. I/O status information: For example, devices allocated to the process,

open files, etc

7. CPU scheduling information: For example, Priority (Different processes

may have different priorities, for example a short process may be assigned a low priority

in the shortest job first scheduling)

All of the above attributes of a process are also known as the context of the process.

Every process has its own program control block(PCB), i.e each process will have a unique

PCB. All of the above attributes are part of the PCB.

States of Process:

A process is in one of the following states:

1. New: Newly Created Process (or) being-created process.

2. Ready: After creation process moves to Ready state, i.e. the process is ready for

execution.

3. Run: Currently running process in CPU (only one process at a time can be under execution

in a single processor).

4. Wait (or Block): When a process requests I/O access.

5. Complete (or Terminated): The process completed its execution.

https://www.geeksforgeeks.org/memory-layout-of-c-program/
http://en.wikipedia.org/wiki/Process_control_block

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

6. Suspended Ready: When the ready queue becomes full, some processes are moved to

suspended ready state.

7. Suspended Block: When waiting queue becomes full.

Process Scheduling

The process scheduling is the activity of the process manager that handles the removal of the

running process from the CPU and the selection of another process on the basis of a

particular strategy.

Process scheduling is an essential part of a Multiprogramming operating systems. Such

operating systems allow more than one process to be loaded into the executable memory at a

time and the loaded process shares the CPU using time multiplexing.

Process Scheduling Queues

The OS maintains all PCBs in Process Scheduling Queues. The OS maintains a separate

queue for each of the process states and PCBs of all processes in the same execution state

are placed in the same queue. When the state of a process is changed, its PCB is unlinked

from its current queue and moved to its new state queue.

The Operating System maintains the following important process scheduling queues −

 Job queue − This queue keeps all the processes in the system.

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

 Ready queue − This queue keeps a set of all processes residing in main memory,

ready and waiting to execute. A new process is always put in this queue.

 Device queues − The processes which are blocked due to unavailability of an I/O

device constitute this queue.

The OS can use different policies to manage each queue (FIFO, Round Robin, Priority, etc.).

The OS scheduler determines how to move processes between the ready and run queues

which can only have one entry per processor core on the system; in the above diagram, it has

been merged with the CPU.

Two-State Process Model

Two-state process model refers to running and non-running states which are described

below −

S.N. State & Description

1
Running

When a new process is created, it enters into the system as in the running state.

2
Not Running

Processes that are not running are kept in queue, waiting for their turn to

execute. Each entry in the queue is a pointer to a particular process. Queue is

implemented by using linked list. Use of dispatcher is as follows. When a

process is interrupted, that process is transferred in the waiting queue. If the

process has completed or aborted, the process is discarded. In either case, the

dispatcher then selects a process from the queue to execute.

Schedulers

Schedulers are special system software which handle process scheduling in various ways.

Their main task is to select the jobs to be submitted into the system and to decide which

process to run. Schedulers are of three types −

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

 Long-Term Scheduler

 Short-Term Scheduler

 Medium-Term Scheduler

Long Term Scheduler

It is also called a job scheduler. A long-term scheduler determines which programs are

admitted to the system for processing. It selects processes from the queue and loads them

into memory for execution. Process loads into the memory for CPU scheduling.

The primary objective of the job scheduler is to provide a balanced mix of jobs, such as I/O

bound and processor bound. It also controls the degree of multiprogramming. If the degree

of multiprogramming is stable, then the average rate of process creation must be equal to the

average departure rate of processes leaving the system.

On some systems, the long-term scheduler may not be available or minimal. Time-sharing

operating systems have no long term scheduler. When a process changes the state from new

to ready, then there is use of long-term scheduler.

Short Term Scheduler

It is also called as CPU scheduler. Its main objective is to increase system performance in

accordance with the chosen set of criteria. It is the change of ready state to running state of

the process. CPU scheduler selects a process among the processes that are ready to execute

and allocates CPU to one of them.

Short-term schedulers, also known as dispatchers, make the decision of which process to

execute next. Short-term schedulers are faster than long-term schedulers.

Medium Term Scheduler

Medium-term scheduling is a part of swapping. It removes the processes from the memory.

It reduces the degree of multiprogramming. The medium-term scheduler is in-charge of

handling the swapped out-processes.

A running process may become suspended if it makes an I/O request. A suspended processes

cannot make any progress towards completion. In this condition, to remove the process from

memory and make space for other processes, the suspended process is moved to the

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

secondary storage. This process is called swapping, and the process is said to be swapped

out or rolled out. Swapping may be necessary to improve the process mix.

Comparison among Scheduler

S.N. Long-Term Scheduler Short-Term

Scheduler

Medium-Term

Scheduler

1 It is a job scheduler It is a CPU scheduler It is a process swapping

scheduler.

2 Speed is lesser than short

term scheduler

Speed is fastest among

other two

Speed is in between both

short and long term

scheduler.

3 It controls the degree of

multiprogramming

It provides lesser

control over degree of

multiprogramming

It reduces the degree of

multiprogramming.

4 It is almost absent or

minimal in time sharing

system

It is also minimal in

time sharing system

It is a part of Time

sharing systems.

5 It selects processes from

pool and loads them into

memory for execution

It selects those

processes which are

ready to execute

It can re-introduce the

process into memory and

execution can be

continued.

Context Switch

A context switch is the mechanism to store and restore the state or context of a CPU in

Process Control block so that a process execution can be resumed from the same point at a

later time. Using this technique, a context switcher enables multiple processes to share a

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

single CPU. Context switching is an essential part of a multitasking operating system

features.

When the scheduler switches the CPU from executing one process to execute another, the

state from the current running process is stored into the process control block. After this, the

state for the process to run next is loaded from its own PCB and used to set the PC, registers,

etc. At that point, the second process can start executing.

Context switches are computationally intensive since register and memory state must be

saved and restored. To avoid the amount of context switching time, some hardware systems

employ two or more sets of processor registers. When the process is switched, the following

information is stored for later use.

 Program Counter

 Scheduling information

 Base and limit register value

 Currently used register

 Changed State

 I/O State information

 Accounting information

Operating System Scheduling algorithms

A Process Scheduler schedules different processes to be assigned to the CPU based on

particular scheduling algorithms. There are six popular process scheduling algorithms which

we are going to discuss in this chapter −

 First-Come, First-Served (FCFS) Scheduling

 Shortest-Job-Next (SJN) Scheduling

 Priority Scheduling

 Shortest Remaining Time

 Round Robin(RR) Scheduling

 Multiple-Level Queues Scheduling

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

These algorithms are either non-preemptive or preemptive. Non-preemptive algorithms

are designed so that once a process enters the running state, it cannot be preempted until it

completes its allotted time, whereas the preemptive scheduling is based on priority where a

scheduler may preempt a low priority running process anytime when a high priority process

enters into a ready state.

First Come First Serve (FCFS)

 Jobs are executed on first come, first serve basis.

 It is a non-preemptive, pre-emptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO queue.

 Poor in performance as average wait time is high.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

P2 8 - 2 = 6

P3 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

Shortest Job Next (SJN)

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

 Impossible to implement in interactive systems where required CPU time is not

known.

 The processer should know in advance how much time process will take.

Given: Table of processes, and their Arrival time, Execution time

Process Arrival Time Execution Time Service Time

P0 0 5 0

P1 1 3 5

P2 2 8 14

P3 3 6 8

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

Waiting time of each process is as follows −

Process Waiting Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 14 - 2 = 12

P3 8 - 3 = 5

Average Wait Time: (0 + 4 + 12 + 5)/4 = 21 / 4 = 5.25

Priority Based Scheduling

 Priority scheduling is a non-preemptive algorithm and one of the most common

scheduling algorithms in batch systems.

 Each process is assigned a priority. Process with highest priority is to be executed

first and so on.

 Processes with same priority are executed on first come first served basis.

 Priority can be decided based on memory requirements, time requirements or any

other resource requirement.

Given: Table of processes, and their Arrival time, Execution time, and priority. Here we are

considering 1 is the lowest priority.

Process Arrival Time Execution Time Priority Service Time

P0 0 5 1 0

P1 1 3 2 11

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

P2 2 8 1 14

P3 3 6 3 5

Waiting time of each process is as follows −

Process Waiting Time

P0 0 - 0 = 0

P1 11 - 1 = 10

P2 14 - 2 = 12

P3 5 - 3 = 2

Average Wait Time: (0 + 10 + 12 + 2)/4 = 24 / 4 = 6

Shortest Remaining Time

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.

 The processor is allocated to the job closest to completion but it can be preempted by

a newer ready job with shorter time to completion.

 Impossible to implement in interactive systems where required CPU time is not

known.

 It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

 Once a process is executed for a given time period, it is preempted and other process

executes for a given time period.

 Context switching is used to save states of preempted processes.

Wait time of each process is as follows −

Process Wait Time : Service Time - Arrival Time

P0 (0 - 0) + (12 - 3) = 9

P1 (3 - 1) = 2

P2 (6 - 2) + (14 - 9) + (20 - 17) = 12

P3 (9 - 3) + (17 - 12) = 11

Average Wait Time: (9+2+12+11) / 4 = 8.5

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other

existing algorithms to group and schedule jobs with common characteristics.

 Multiple queues are maintained for processes with common characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

Operating System - Multi-Threading

Thread

A thread is a flow of execution through the process code, with its own program counter that

keeps track of which instruction to execute next, system registers which hold its current

working variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code segment, data segment and

open files. When one thread alters a code segment memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way to improve application

performance through parallelism. Threads represent a software approach to improving

performance of operating system by reducing the overhead thread is equivalent to a classical

process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each

thread represents a separate flow of control. Threads have been successfully used in

implementing network servers and web server. They also provide a suitable foundation for

parallel execution of applications on shared memory multiprocessors. The following figure

shows the working of a single-threaded and a multithreaded process.

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

Difference between Process and Thread

S.N. Process Thread

1 Process is heavy weight or resource

intensive.

Thread is light weight, taking lesser

resources than a process.

2 Process switching needs interaction

with operating system.

Thread switching does not need to

interact with operating system.

3 In multiple processing environments,

each process executes the same code

but has its own memory and file

resources.

All threads can share same set of open

files, child processes.

4 If one process is blocked, then no

other process can execute until the

first process is unblocked.

While one thread is blocked and

waiting, a second thread in the same

task can run.

5 Multiple processes without using

threads use more resources.

Multiple threaded processes use fewer

resources.

6 In multiple processes each process

operates independently of the others.

One thread can read, write or change

another thread's data.

Advantages of Thread

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

 Threads allow utilization of multiprocessor architectures to a greater scale and

efficiency.

Types of Thread

Threads are implemented in following two ways −

 User Level Threads − User managed threads.

 Kernel Level Threads − Operating System managed threads acting on kernel, an

operating system core.

User Level Threads

In this case, the thread management kernel is not aware of the existence of threads. The

thread library contains code for creating and destroying threads, for passing message and

data between threads, for scheduling thread execution and for saving and restoring thread

contexts. The application starts with a single thread.

Advantages

 Thread switching does not require Kernel mode privileges.

 User level thread can run on any operating system.

 Scheduling can be application specific in the user level thread.

 User level threads are fast to create and manage.

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

Disadvantages

 In a typical operating system, most system calls are blocking.

 Multithreaded application cannot take advantage of multiprocessing.

Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread management code

in the application area. Kernel threads are supported directly by the operating system. Any

application can be programmed to be multithreaded. All of the threads within an application

are supported within a single process.

The Kernel maintains context information for the process as a whole and for individuals

threads within the process. Scheduling by the Kernel is done on a thread basis. The Kernel

performs thread creation, scheduling and management in Kernel space. Kernel threads are

generally slower to create and manage than the user threads.

Advantages

 Kernel can simultaneously schedule multiple threads from the same process on

multiple processes.

 If one thread in a process is blocked, the Kernel can schedule another thread of the

same process.

 Kernel routines themselves can be multithreaded.

Disadvantages

 Kernel threads are generally slower to create and manage than the user threads.

 Transfer of control from one thread to another within the same process requires a

mode switch to the Kernel.

Multithreading Models

Some operating system provide a combined user level thread and Kernel level thread

facility. Solaris is a good example of this combined approach. In a combined system,

 Lakshmi Narain College of Technology, Bhopal (M.P.)

 Department of Computer Science & Engineering

multiple threads within the same application can run in parallel on multiple processors and a

blocking system call need not block the entire process.

Difference between User-Level & Kernel-Level Thread

S.N. User-Level Threads Kernel-Level Thread

1 User-level threads are faster to create and

manage.

Kernel-level threads are slower to

create and manage.

2 Implementation is by a thread library at the

user level.

Operating system supports

creation of Kernel threads.

3 User-level thread is generic and can run on

any operating system.

Kernel-level thread is specific to

the operating system.

4 Multi-threaded applications cannot take

advantage of multiprocessing.

Kernel routines themselves can be

multithreaded.

References

 https://www.tutorialspoint.com/operating_system

 https://www.javatpoint.com/os-tutorial

 https://www.studytonight.com/operating-system/

 https://www.geeksforgeeks.org/operating-systems/

 Silberschatz, Galvin, Gagne, “Operating System Concepts‟‟, Wiley, 9/E

 William Stalling, “Operating Systems”, Pearson Education

 Andrew S. Tanenbaum, “Modern Operating Systems”, 3/e, Prentice Hall

