

Name of Faculty: Dr. Amit Kumar Nayak Designation: Professor Department: Pharmacy Subject: Biostatistics and Research Methodology (BP 801T) Unit: V Topic: Design and Analysis of Experiments

Homework 2.2.1

A 2² experiment

Project:

optimisation of a chemical process yield Factors (with levels):

operating temperature (Low, High) catalyst (C1, C2)

Design:

Process run at all four possible combinations of factor levels, in duplicate, in random order.

-

-

Standard Order	Run Order	Temperature	Catalyst	Yield
1	6	Low	1	60
2	8	High	1	72
3	1	Low	2	52
4	4	High	2	83
5	3	Low	1	54
6	7	High	1	68
7	2	Low	2	45
8	5	High	2	80

Calculating s and df

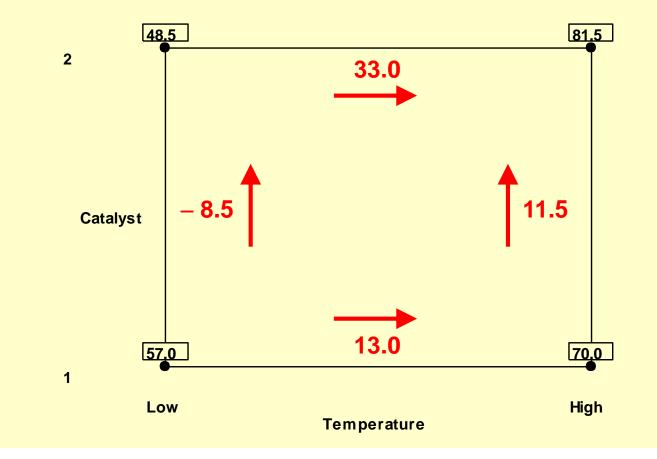
Lecture 2.2 6

Temperature	Catalyst	Rep1	Rep2	S	df
Low	1	60	54	4.2	1
High	1	72	68	2.8	1
Low	2	52	45	4.9	1
High	2	83	80	2.1	1
			RMS	3.7	4

Calculation of t-statistic

Results (Temperature order)

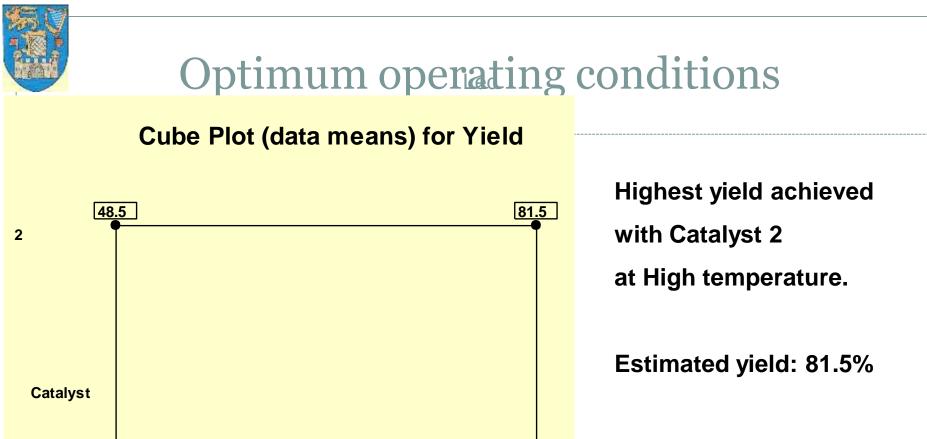
	Standard Order	Run Order	Temperature	Catalyst	Yield
	3	1	Low	2	52
	7	2	Low	2	45
	5	3	Low	1	54
	1	6	Low	1	60
	4	4	High	2	83
	8 52.75	5 75-7	75 High	2 23	80
	6	7	High	- <u>5</u> 1	68
	2	8	High _{2.6}	, 1	8. 82
₹ T _{Low} =	-	$\overline{\mathbf{Y}}_{High} =$	<mark>∀</mark> _{High} –	$\overline{Y}_{Low} =$	
SE(T _H	_{igh} – ႃႃၴ _{Low})	$=\sqrt{\frac{s^2}{4}}$	$+\frac{s^2}{4}=\sqrt{2rac{s^2}{4}}$	=	t =


Homework 2.2.1

Test the statistical significance of and calculate confidence intervals for the Catalyst effect and the Temperature \times Catalyst interaction.

Interaction illustrated

Cube Plot (data means) for Yield



Finding the optimum

More Minitab results

Least Squares Means for Yield

	Mean	SE Mean
Temperature		
Low	52.75	1.854
High	75.75	1.854
Catalyst		
1	63.50	1.854
2	65.00	1.854
Temperature*Catalyst		
Low 1	57.00	2.622
High 1	70.00	2.622
Low 2	48.50	2.622
High 2	81.50	2.622

70,0

High

95% confidence interval:
81.5 ± 2.78 × 2.622,

- i.e., 81.5 ± 7.3,
- i.e., (74.2,88.8)

LNCP, Bhopal

57,0

Low

Temperature

Part 2 Wine tasting measurement

As part of a project to develop a GC method for analysing trace compounds in wine without the need for prior extraction of the compounds, a synthetic mixture of aroma compounds in ethanol-water was prepared.

The effects of two factors, Injection volume and Solvent flow rate, on GC measured peak areas given by the mixture were assessed using a 2² factorial design with 3 replicate measurements at each design point. The results are shown in the table that follows. What conclusions can be drawn from these data? Display results numerically and graphically. Check model assumptions by using appropriate residual nlote

 	(2.2)	
		volume, μL
Solvent flow rate, mL/min	100	200
	13.1	126.5
400	15.3	118.5
	17.7	122.1
	48.8	134.5
200	42.1	135.4
	39.2	128.6

			(2	2	
Design Point	Volume	Flow Rate	1	Peak Are	ea
1	100	400	13.1	15.3	17.7
2	200	400	126.5	118.5	122.1
3	100	200	48.8	42.1	39.2
4	200	200	134.5	135.4	128.6

Design Point	Volume	Flow Rate	2.	2) Peak Are	a	Mean	SD
1	100	400	13.1	15.3	17.7	15.37	2.30
2	200	400	126.5	118.5	122.1	122.37	4.01
3	100	200	48.8	42.1	39.2	43.37	4.92
4	200	200	134.5	135.4	128.6	132.83	3.69

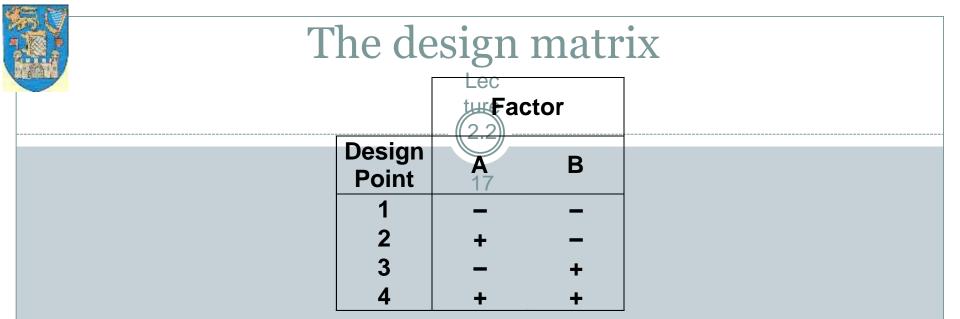
$$s^2 = average(SD^2)$$

$$= (2.30^{2} + 4.01^{2} + 4.92^{2} + 3.69^{2}) / 4$$

$$s = 3.85$$

df(s) = sum[df(SD)]

$$= 2 + 2 + 2 + 2$$


Introducing the design matrix

Organising the data for calculation

2.2

Design Point	Volume	Flow Rate	Peak Area			Mean	SD		
1	100	400	13.1	15.3	17.7	15.37	2.30		
2	200	400	126.5	118.5	122.1	122.37	4.01		
3	100	200	48.8	42.1	39.2	43.37	4.92		
4	200	200	134.5	135.4.	128.6	132.83	3.69		
Generic notation									

Design Point	Α	В	Peak Area			Mean	SD
1	_	_	13.1	15.3	17.7	15.37	2.30
2	+	_	126.5	118.5	122.1	122.37	4.01
3	_	+	48.8	42.1	39.2	43.37	4.92
4	+	+	134.5	135.4	128.6	132.83	3.69

- Prior to the experiment, the *rows* designate the *design points*, the sets of conditions under which the process is to be run.
- After the experiment, the *columns* designate the *contrasts,* the combinations of design point means which measure the main effects of the factors.

13	Carca	lating		racin	JII CIICCES,			
Ň	the <i>extended</i> design matrix							
			Leo					
		The	extended	design ma	atrix			
	Docian		18	U				
	Design Point	Α	В	AB	Mean			
	1	_	_	+	$\overline{Y}_1 = 15.37$			
	2	+	_	-	$\overline{Y}_{2} = 122.37$			
	3	-	+	-	$\overline{Y}_{3} = 43.37$			
AB Int	eractio h =	¹/ ±(A e	ffect t t hi	gh B+ A	effet at 134.83			
	=							
	=							
		Check	$(\overline{Y}_3) - (\overline{Y}_2)$	_A₽}]=	$A \times B$			

$$\frac{1}{2}(\overline{\mathbf{Y}}_1 - \overline{\mathbf{Y}}_2 - \overline{\mathbf{Y}}_3 + \overline{\mathbf{Y}}_4)$$

art <u>3</u> <u>3</u> factors each at <u>2</u> levels, a 2³ experiment

An experiment to investigate the effects on yield of a chemical process of changes to operating Temperature, raw material Concentration and type of Catalyst was conducted in a pilot plant set up for experimentation. Details were as follows.

Factor settings and codes										
Temperature, T (°C)Concentration, C (%)Catalyst, K										
160	180	20	40	Α	В					
-	+	-	+	-	+					

ľ		I	Design		
	Standard	Temperature	Concentration	Catalyst	
	Order	Ť(°C)	C(%)	ĸ	
	1	160	20 20	Α	
	2	160	20	Α	
	3	180	20	Α	
	4	180	20	Α	
	5	160	40	Α	
	6	160	40	Α	
	7	180	40	Α	
	8	180	40	Α	
	9	160	20	B	
	10	160	20	B	
	11	180	20	В	
	12	180	20	В	
	13	160	40	B	
	14	160	40	В	
	15	180	40	B	
	16	180	40	В	

H)]	Design		
	Standard	Temperature	Concentration	Catalyst	Run
	Order	Ť(°C)	C(%)	ĸ	Order
	1	160	21 20	Α	6
	2	160	20	Α	13
	3	180	20	Α	2
	4	180	20	Α	4
	5	160	40	Α	1
	6	160	40	Α	16
	7	180	40	Α	5
	8	180	40	Α	10
	9	160	20	В	8
	10	160	20	В	12
	11	180	20	В	9
	12	180	20	В	14
	13	160	40	В	3
	14	160	40	В	11
	15	180	40	В	7
	16	180	40	В	15

	1	Design		
 Standard	Temperature	Concentration	Catalyst	Run
Order	T(°C)	C(%)	ĸ	Order
5	160	22 40	Α	1
3	180	20	Α	2
13	160	40	В	3
4	180	20	Α	4
7	180	40	Α	5
1	160	20	Α	6
15	180	40	В	7
9	160	20	В	8
11	180	20	В	9
8	180	40	Α	10
14	160	40	В	11
10	160	20	В	12
2	160	20	Α	13
12	180	20	В	14
16	180	40	В	15
6	160	40	Α	16

Results

Standard	Temperature	Concentration	Catalyst	Run	Viold
Order	Ť(°C)	C(%)	ĸ	Order	Yield
5	160	40 8	Α	1	50
3	180	20	Α	2	74
13	160	40	В	3	46
4	180	20	Α	4	70
7	180	40	Α	5	69
1	160	20	Α	6	59
15	180	40	В	7	79
9	160	20	В	8	50
11	180	20	В	9	81
8	180	40	Α	10	67
14	160	40	В	11	44
10	160	20	В	12	54
2	160	20	Α	13	61
12	180	20	В	14	85
16	180	40	В	15	81
6	160	40	Α	16	58

Results, in standard order

24							
т	С	К	Yield	Mean	SD		
-	-	-	59 61	60	1.41		
+	-	-	74 70	72	2.83		
_	+	-	50 58	54	5.66		
+	+	-	69 67	68	1.41		
_	-	+	50 54	52	2.83		
+	-	+	81 85	83	2.83		
-	+	+	46 44	45	1.41		
+	+	+	79 81	80	1.41		

Calculating effects, the extended design matrix

Design				62	<u> </u>			
Point	Т	С	K	TC	TK	СК	тск	Mean
1	_	_	-	+ 25	+	+		60
2	+	-	-	-	-	+	+	72
3	-	+	-	-	+	-	+	54
4	+	+	-	+	-	-	-	68
5	-	-	+	+	-	-	+	52
6	+	_	+	-	+	-	-	83
7	—	+	+	—	-	+	-	45
8	+	+	+	+	+	+	+	80

3-factor interaction measures

the change in any 2fi when the third factor changes. e.g., the change in T×C between low and high K. *Report results separately at all 2³ combinations*

Calculating s

т	С	К	Yield	Mean	SD	Variance = ¹ / ₂ (diff) ²
-	-	-	59 61	60	1.41	2
+	-	-	74 70	72	2.83	8
-	+	-	50 58	54	5.66	32
+	+	-	69 67	68	1.41	2
-	-	+	50 54	52	2.83	8
+	-	+	81 85	83	2.83	8
-	+	+	46 44	45	1.41	2
+	+	+	79 81	80	1.41	2

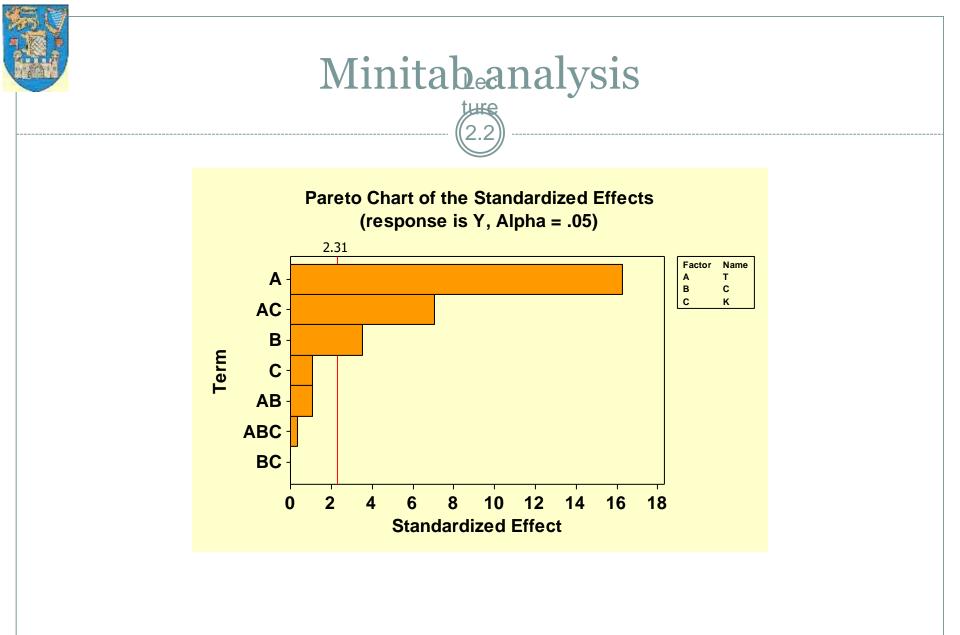
 Total
 64

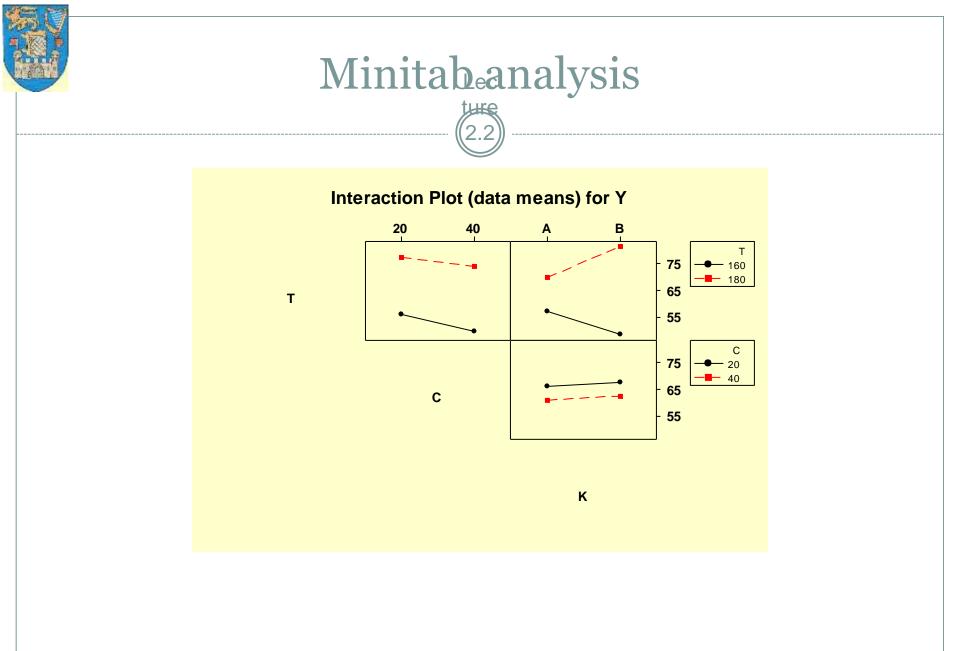
 s²
 8

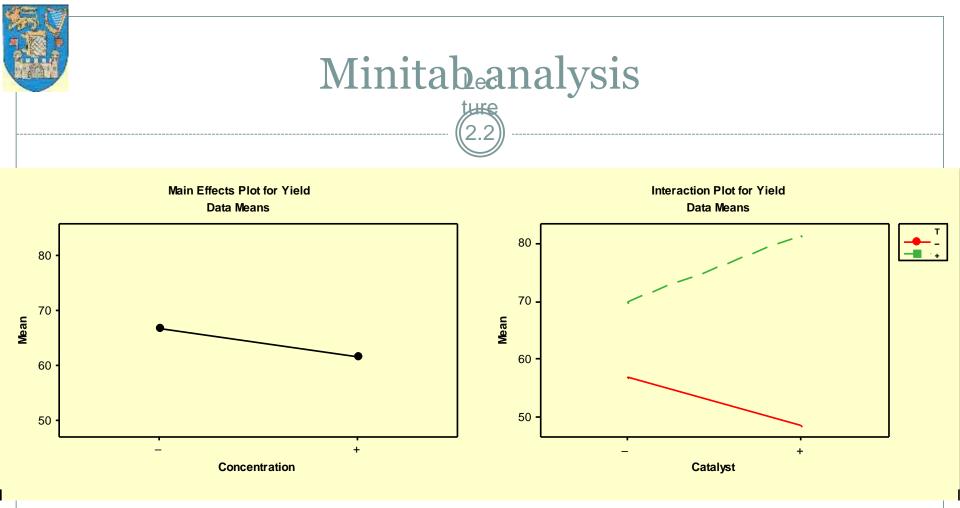
s 2.83

Exercise 3.1.1

Calculate the t-ratio for the²T effect, the TC 2-factor interaction and the TCK 3-factor interaction. What conclusions do you draw?

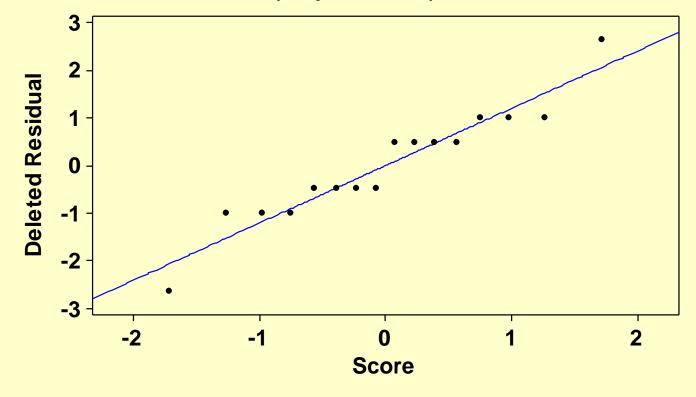

LNC


Τ/

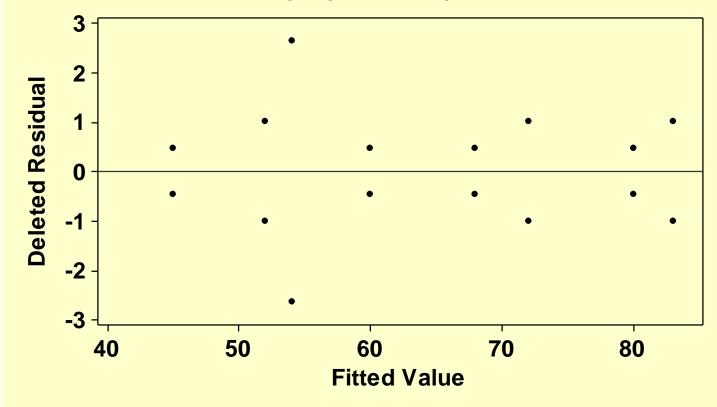

Minitab_analysis

Estimated Effects for Yield

Term	Effect	SE	Т	P
T 0.000	23.0	1.414	16.26	
C 0.008	-5.0	1.414	-3.54	
K 0.320	1.5	1.414	1.06	
T*C 0.320	1.5	1.414	1.06	
ᢗPᠠ᠋ᡏᡰᡃᢟᡟᡃ	10 0	1 414	7 07	



Minitab diagnostic analysis


Normal Probability Plot of the Residuals (response is Y)

Minitab diagnostic analysis

Residuals Versus the Fitted Values (response is Y)

Homework 3.1.1

An experiment was run to assess the effects of three factors on the life of a cutting tool

- A: Cutting speed
- B: Tool geometry
- C: Cutting angle.

The full 2³ design was replicated three times. The results are shown in the next slide and are available in Excel file Tool Life.xls.

Carry out a full analysis and report.

Cutting Speed	Tool Geometry	Cutting Angle	Tool Life		
-	-	-	22	31	25
+	-	-	32	43	29
-	+	-	35	34	50
+	+	-	55	47	46
-	-	+	44	45	38
+	-	+	40	37	36
-	+	+	60	50	54
+	+	+	39	41	47

A process development study with four factors each at two levels

	<u>Low (–)</u>	<u>High (+)</u>
A: Catalyst Charge (lbs)	10	15
B: Temperature (°C)	220	240
C: Concentration (%)	10	12
D: Pressure (bar)	50	80

2⁴ in 16 runs, no replicates

Process yields resulting from varying levels of four two-level factors arranged in a 2⁴ design run in completely random order

Design Point	Catalyst Charge	Temperature	Concentration	Pressure	Y	RunOrder
1	10	220	10	50	70	8
2	15	220	10	50	60	2
3	10	240	10	50	89	10
4	15	240	10	50	81	4
5	10	220	12	50	60	16
6	15	220	12	50	49	5
7	10	240	12	50	88	11
8	15	240	12	50	82	14
9	10	220	10	80	69	15
10	15	220	10	80	62	9
11	10	240	10	80	88	1
12	15	240	10	80	81	13
13	10	220	12	80	60	3
14	15	220	12	80	52	12
15	10	240	12	80	86	6
16	15	240	12	80	79	7

No replication: alternative analyses

• Normal plots of effects₃₈

 if no effects present, estimated effects reflect chance variation, follow Normal model

o a few real effects will appear as exceptions in a Normal plot

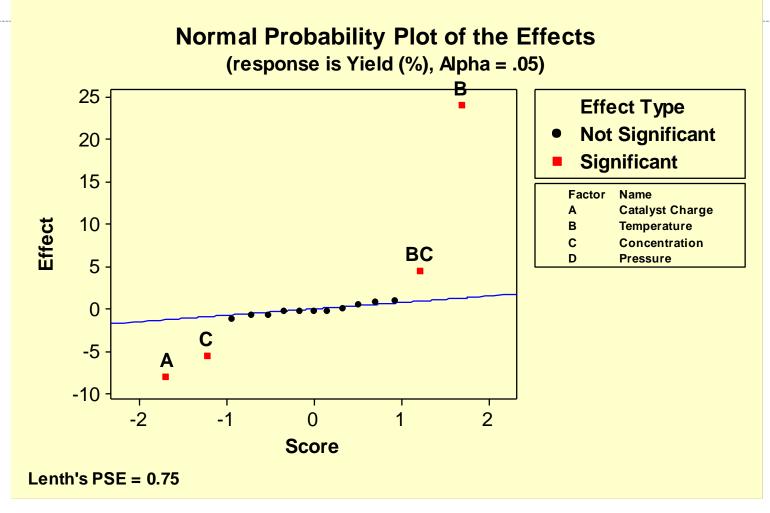
Lenth method

o alternative estimate of s, given a few real effects

• Best approach: combine both!

No replication: alternative analyses

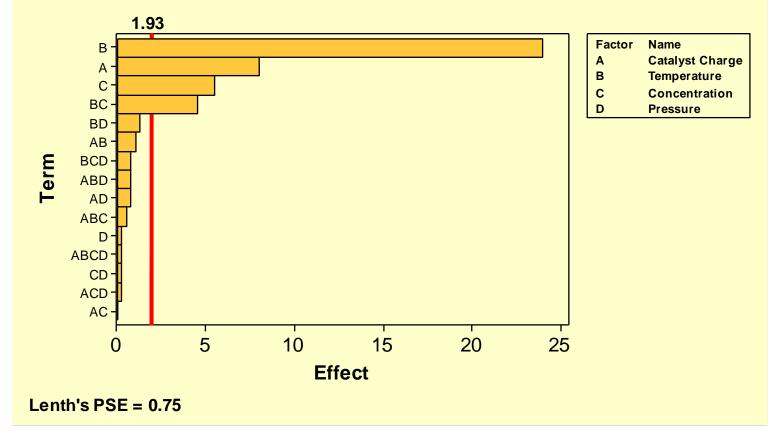
2.2


Estimated Effects for Yield (%)

(use design matrix columns)

Term	Effect
Catalyst Charge	-8.000
Temperature	24.000
Concentration	-5.500
Pressure	-0.250
Catalyst Charge*Temperature	1.000
Catalyst Charge*Concentration	-0.000
Catalyst Charge*Pressure	0.750
Temperature*Concentration	4.500
Temperature*Pressure	-1.250
NCPCondentration*Pressure	-0.250

Normal Effects Plot



Pareto Chart of the Effects

(response is Yield (%), Alpha = .05)

Lenth's method

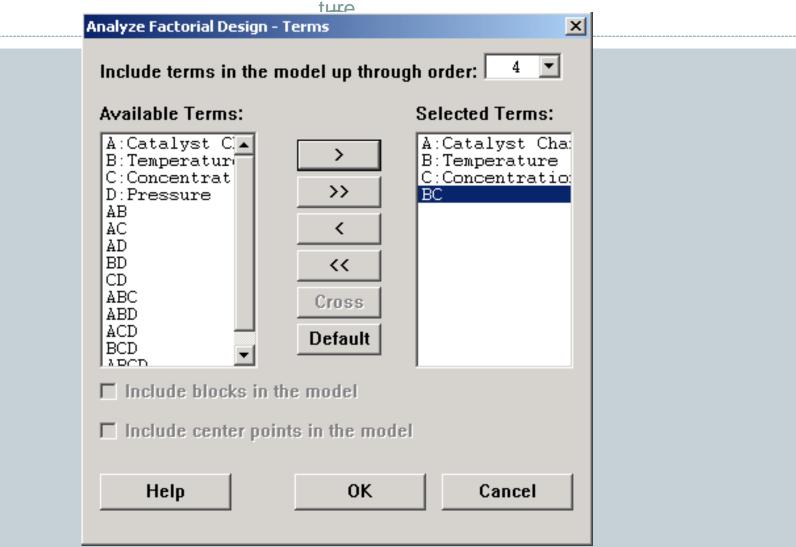
Given several Normal values with mean 0
and given their absolute values (magnitudes, or values without signs), then it may be shown that
SD(Normal values) ≈ 1.5 × median(Absolute values).
Given a small number of effects with mean ≠ 0, then
SD(Normal values) is a small bit bigger.

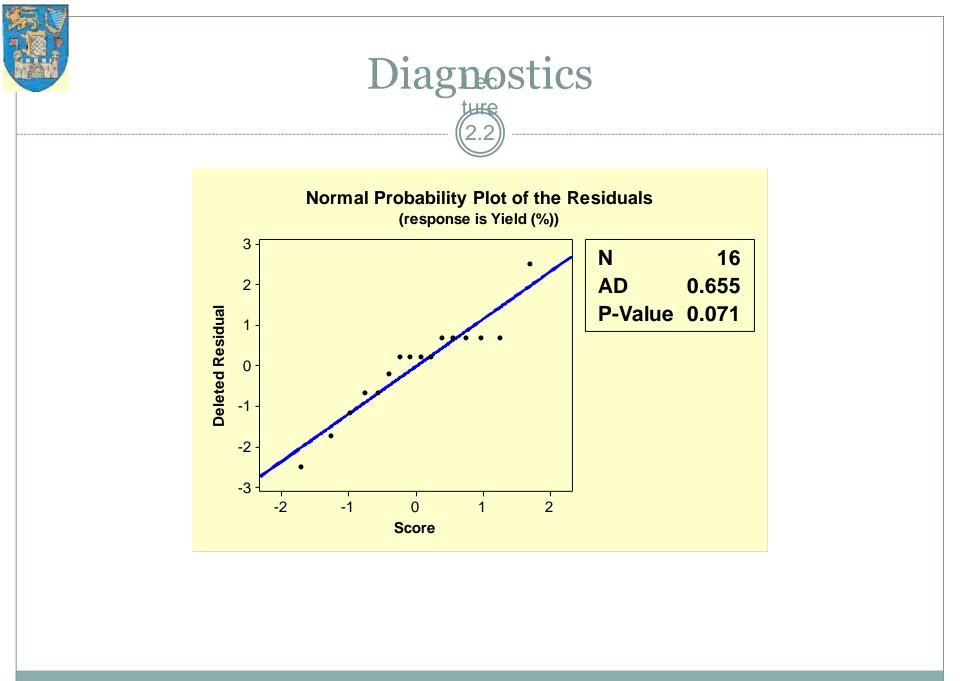
Refinement: PSE \approx 1.5 × median(Absolute values < 2.5)

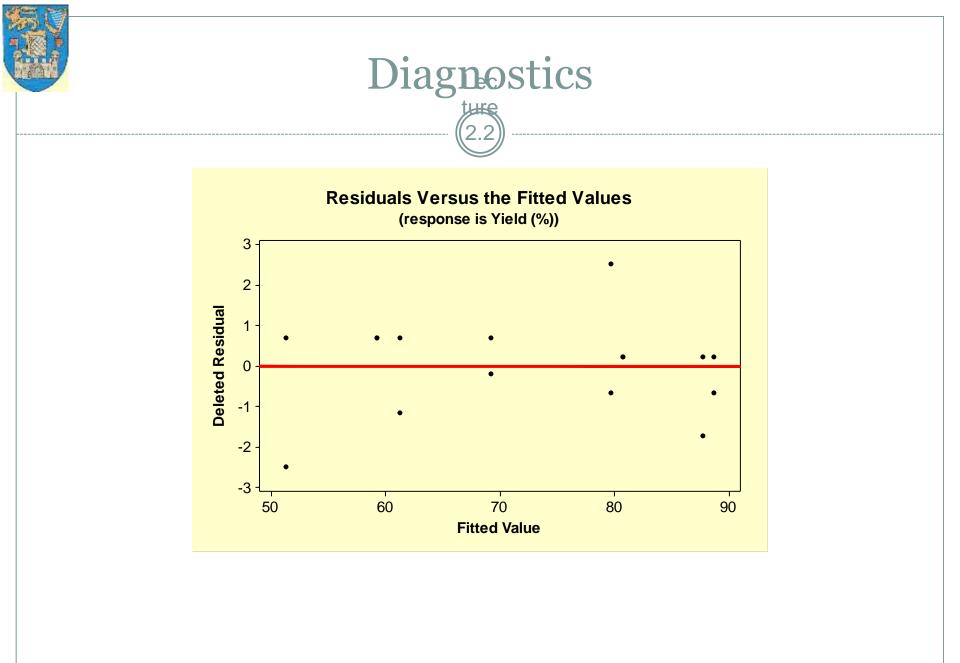
Lenth's method illustrated

Example

-41 14 -23 -1 -38 -5⁴³-27 -34 -9 -32 29 -18 -48 -25 -37 Values 1 38 5 27 34 41 14 23 9 32 29 18 Magnitudes 48 25 37 ed 1 5 9 14 18 23 25 27 29 32 34 37 38 41 Add 50 to 3 values, to represent 3 active effects; 48 Sorted median will be 27, 29, 32 or 34; not much bigger, so s will be not much bigger, o provides a suitable basis for a "t"-test. See Laboratory 1 for simulation




Reduced Model method


- Select identified terms for⁴a fitted model
 o mitted terms provide basis for estimating σ
- Check diagnostics
- Estimate effects
 - ANOVA used to estimate s
- Identify optimal operating conditions

Reduced model

Estimated effects

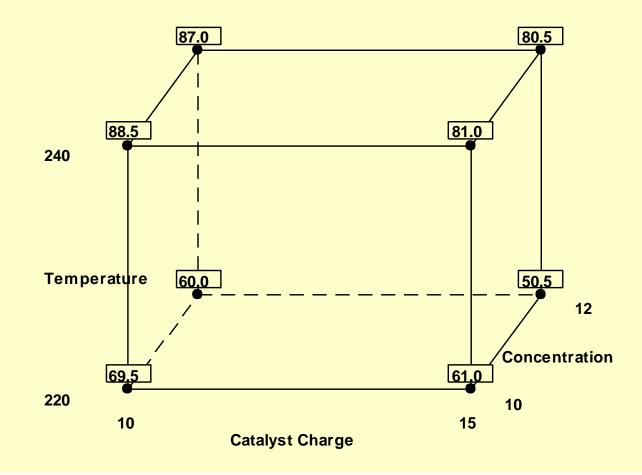
Estimated Effects for Yield

Term	Effect	SE	Т	Р
Catalyst Charge	-8.000	0.657	-12.17	0.000
Temperature	24.000	0.657	36.52	0.000
Concentration	-5.500	0.657	-8.37	0.000
Temperature*Concentration	4.500	0.657	6.85	0.000

S = 1.31426

Analysis of Variance (basis for s)

2.2


Analysis of Variance for Yield (%)

Source	DF	SS	MS	F	P
Main Effects	3	2681.00	893.667	517.39	0.000
2-Way Interactions	1	81.00	81.000	46.89	0.000
Residual Error	11	19.00	1.727		
Total	15	2781.00			

s = sqrt(1.727) = 1.31

Identify optimal operating conditions

Cube Plot (data means) for Yield (%)

Identify optimal operating conditions

Confirm the calculation of the confidence interval for optimum yield.

 $CI = 88.5 \pm 2.2 \times 0.93 = (86.45, 90.55)$

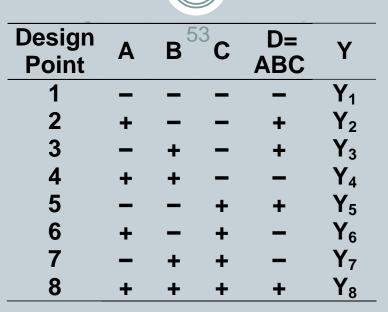
Exercise

Calculate a confidence interval for the 'next best' yield. Homework

Test the statistical significance of the difference between best and next best yields.

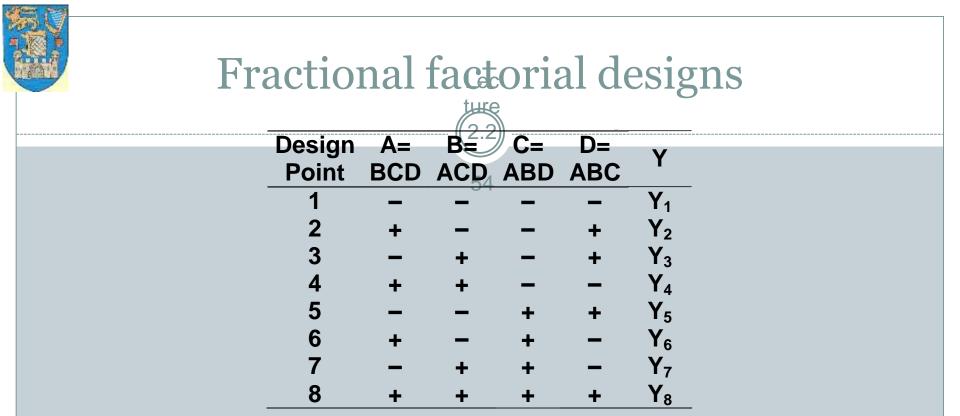
Homework

52


Design Projection

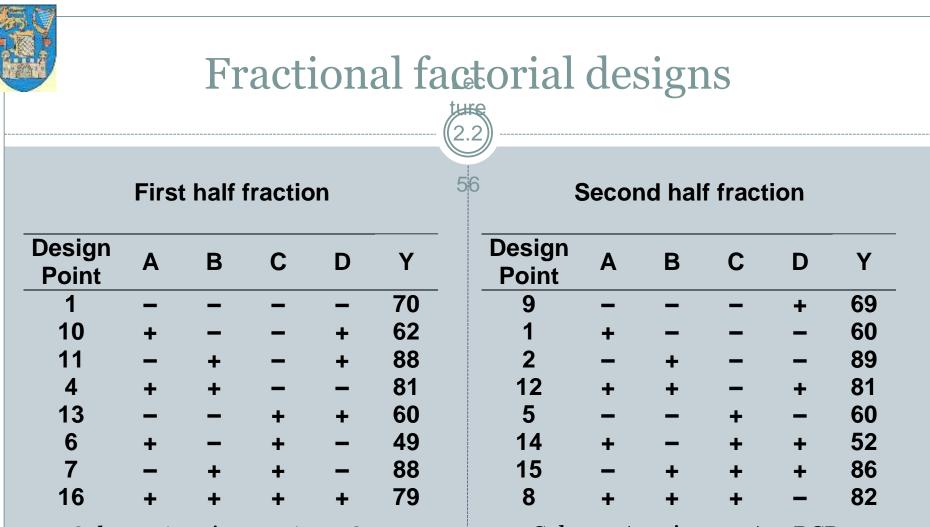
Since Pressure is not statistically significant, it may be treated as an "inert" factor and the design may be treated as a 2³ with duplicate observations.

Analyze these data accordingly.


Compare results with the Lenth method and the Reduced Model method.

5 Introduction to Fractional Factorial Designs

Fourth column estimates D main effect. Fourth column also estimates ABC interaction effect in 2³.


In fact, fourth column estimates D + ABC in 2^{4-1} .

Confirm "confounding" patterns shown. Also, confirm AB = CD. What other effects are confounded?

Fractional factorial designs

First half fraction						Full fa	actoria	al des	ign		
Design Point	Α	В	С	D	Y	55 Design Point	Α	В	С	D	Y
1	-	-	-	-	70	1	-	_	_	-	70
2	+	-	-	+	62	2	+	-	_	-	60
3	-	+	-	+	88	3	-	+	_	-	89
4	+	+	-	-	81	4	+	+	-	-	81
5	-	-	+	+	60	5	-	-	+	-	60
6	+	-	+	-	49	6	+	-	+	-	49
7	-	+	+	-	88	7	-	+	+	-	88
8	+	+	+	+	79	8	+	+	+	-	82
						9	-	-	-	+	69
						10	+	-	-	+	62
						11	—	+	-	+	88
Ida	Identify corresponding						+	+	-	+	81
idei	COI	resp	Unull	- -	13	-	-	+	+	60	
design points						14	+	-	+	+	52
		-				15	-	+	+	+	86
						16	+	+	÷	+	79

Column A estimates A + BCD

Column A estimates A – BCD

Full 2⁴ design: Column A estimates $\frac{1}{2}[(A + BCD) + (A - BCD)] = A$

6 "Coefficients" in Minitab output

Estimated Effects and Coefficients for Yield (coded units) 57

2.2

Term	Effect	Coef	SE Coef	Т	P
Constant		64.250	0.7071	90.86	0.000
Т	23.000	11.500	0.7071	16.26	0.000
С	-5.000	-2.500	0.7071	-3.54	0.008
K	1.500	0.750	0.7071	1.06	0.320
T*C	1.500	0.750	0.7071	1.06	0.320
T*K	10.000	5.000	0.7071	7.07	0.000
C*K	0.000	0.000	0.7071	0.00	1.000
T*C*K	0.500	0.250	0.7071	0.35	0.733

LNCPShopel 2.82843

2.2) Recall Slide 28: 58 Estimated Effects for Yield Effect SE Term Τ 1.414 16.26 23.0 Т 0.000 С -5.0 1.414 -3.54 0.008 1.5 1.06 1.414 Κ 0.320 T * C1.414 1.06 1.5 0.320 10.0 7.07 LNCF,BhtpK 1.414

Lec

Ρ

Minitab Regression output

2.2

Regression Analysis: Yield versus T_160, C_20, K_A 59

The regression equation is Yield = $64.3 - 11.5 T_{160} + 2.50 C_{20} - 0.75 K_A$

Predictor	Coef	SE Coef	Т	P
Constant	64.250	1.571	40.89	0.000
T_160	-11.500	1.571	-7.32	0.000
C_20	2.500	1.571	1.59	0.138
K_A	-0.750	1.571	-0.48	0.642

S = 6.28490

LNCPNBral Values for T 160, C 20, K A are +1 and -1

EM §5.3, §5.4, §5.6, §5.7.1 DCM §6-2, §6-3 to p.218, §6.5 to p. 235, §8.1, §8.2.1 BHH § 5.14 (Lenth plots) and all of Ch. 5!