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Introduction:   
Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic 
programming, as greedy method, is a powerful algorithm design technique 
used when the solution to the problem may be viewed as the result of a sequence of 
decisions. In the greedy method we make irrevocable decisions one at a time, using a 
greedy criterion. However, in dynamic programming we examine the decision 
sequence to see whether an optimal decision sequence contains optimal decision 
subsequence. 
 
When optimal decision sequences contain optimal decision subsequences, we can 
establish recurrence equations, called dynamic
enable us to solve the problem in an efficient way.
 
Dynamic programming is based on the principle of optimality (also coined by 
Bellman). The principle of optimality states that no matter whatever the initial state and 
initial decision are, the remaining d
decision sequence with regard to the state resulting from the first decision. The 
principle implies that an optimal decision sequence is comprised of optimal decision 
subsequences. Since the principle of optimali
some problems, it is necessary to verify that it does hold for the problem being solved. 
Dynamic programming cannot be applied when this principle does not hold.
 
The steps in a dynamic programming solution are:
 

• Verify that the principle of optimality holds
 

• Set up the dynamic-programming recurrence equations
 

• Solve the dynamic-programming recurrence equations for the value of the 
optimal solution. 

 
• Perform a trace back step in which the solution itself is constru

Dynamic programming differs from the greedy method since the greedy method 
produces only one feasible solution, which may or may not be optimal, while dynamic 
programming produces all possible sub
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Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic 
programming, as greedy method, is a powerful algorithm design technique that can be 
used when the solution to the problem may be viewed as the result of a sequence of 
decisions. In the greedy method we make irrevocable decisions one at a time, using a 
greedy criterion. However, in dynamic programming we examine the decision 

quence to see whether an optimal decision sequence contains optimal decision 

When optimal decision sequences contain optimal decision subsequences, we can 
establish recurrence equations, called dynamic-programming recurrence equations, that 
nable us to solve the problem in an efficient way. 

Dynamic programming is based on the principle of optimality (also coined by 
Bellman). The principle of optimality states that no matter whatever the initial state and 
initial decision are, the remaining decision sequence must constitute an optimal 
decision sequence with regard to the state resulting from the first decision. The 
principle implies that an optimal decision sequence is comprised of optimal decision 
subsequences. Since the principle of optimality may not hold for some formulations of 
some problems, it is necessary to verify that it does hold for the problem being solved. 
Dynamic programming cannot be applied when this principle does not hold. 

The steps in a dynamic programming solution are: 

Verify that the principle of optimality holds 

programming recurrence equations 

programming recurrence equations for the value of the 

Perform a trace back step in which the solution itself is constructed. 
Dynamic programming differs from the greedy method since the greedy method 
produces only one feasible solution, which may or may not be optimal, while dynamic 
programming produces all possible sub-problems at most once, one of which 
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Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic 
that can be 

used when the solution to the problem may be viewed as the result of a sequence of 
decisions. In the greedy method we make irrevocable decisions one at a time, using a 
greedy criterion. However, in dynamic programming we examine the decision 

quence to see whether an optimal decision sequence contains optimal decision 

When optimal decision sequences contain optimal decision subsequences, we can 
programming recurrence equations, that 

Dynamic programming is based on the principle of optimality (also coined by 
Bellman). The principle of optimality states that no matter whatever the initial state and 

ecision sequence must constitute an optimal 
decision sequence with regard to the state resulting from the first decision. The 
principle implies that an optimal decision sequence is comprised of optimal decision 

ty may not hold for some formulations of 
some problems, it is necessary to verify that it does hold for the problem being solved. 

programming recurrence equations for the value of the 

Dynamic programming differs from the greedy method since the greedy method 
produces only one feasible solution, which may or may not be optimal, while dynamic 

problems at most once, one of which 
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guaranteed to be optimal. Optimal solutions to sub
thereby avoiding the work of recomputing the answer every time a sub
encountered 
 
The divide and conquer principle solve a large problem, by breaking it up into smaller 
problems which can be solved independently. In dynamic programming this principle 
is carried to an extreme: when we don't know exactly which smaller problems to solve, 
we simply solve them all, then store the answers away in a table to be used later in 
solving larger problems. Care is to be taken to avoid recomputing previously computed 
values, otherwise the recursive program will have prohibitive complexity. In some 
cases, the solution can be improved and in other cases, the dynamic programming 
technique is the best approach. 
 
      Dynamic programming and Greedy strategy both are used for solving optimization 
problem. Optimization problem are those which require either minimum or maximum 
result. In greedy, we have predefined method like Prims, Kruskals but in dyna
programming to find all possible solution and pickup the best solution, but its time 
consuming process. 
 
   In greedy method decision takes in one time and follow the procedure. In dynamic 
programming in every stage to take the decision. Dynamic progra
principal of optimality, problem can be solved by sequence of decision.
 
0/1 Knapsack problem:  
       The Knapsack problem is an optimization problem, where  constrained is the 
number of object that can be placed inside a fixed size knapsac
with specific weight and profit(value), the aim is to get as much profit into the 
knapsack as possible given the weight.
        The knapsack problem is  an example of  a combinational optimization problem, a 
topic in mathematics and computer science about finding the optimal object among a 
set of objects. In 0/1 knapsack problem objects are not divisible i.e. you can not break 
an object, you either take an object or not, like objects
machine etc.   
 
Example: Solve the following instance of 0/1 knapsack problem using dynamic 
programming .  (RGPV DEC 2016)
 
Object:      1             2         3           4
Weight:     4             7         5           3
Profit:       $40      $42       $25       $12
The capacity of Knapsack is 10 
 
 
Solution: 
In this problem  we have  maximum capacity is 10. 
problem solved by tabulation method for this we have to use following 
formula  
                                 V[i,w]= Max[V(i
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optimal. Optimal solutions to sub-problems are retained in a table, 
thereby avoiding the work of recomputing the answer every time a sub-problem is 

The divide and conquer principle solve a large problem, by breaking it up into smaller 
which can be solved independently. In dynamic programming this principle 

is carried to an extreme: when we don't know exactly which smaller problems to solve, 
we simply solve them all, then store the answers away in a table to be used later in 

ger problems. Care is to be taken to avoid recomputing previously computed 
values, otherwise the recursive program will have prohibitive complexity. In some 
cases, the solution can be improved and in other cases, the dynamic programming 

Dynamic programming and Greedy strategy both are used for solving optimization 
problem. Optimization problem are those which require either minimum or maximum 
result. In greedy, we have predefined method like Prims, Kruskals but in dyna
programming to find all possible solution and pickup the best solution, but its time 

In greedy method decision takes in one time and follow the procedure. In dynamic 
programming in every stage to take the decision. Dynamic programming based on 
principal of optimality, problem can be solved by sequence of decision. 

The Knapsack problem is an optimization problem, where  constrained is the 
number of object that can be placed inside a fixed size knapsack. Given a set of object 
with specific weight and profit(value), the aim is to get as much profit into the 
knapsack as possible given the weight. 

The knapsack problem is  an example of  a combinational optimization problem, a 
nd computer science about finding the optimal object among a 

set of objects. In 0/1 knapsack problem objects are not divisible i.e. you can not break 
an object, you either take an object or not, like objects-fan, light, computer, washing 

Solve the following instance of 0/1 knapsack problem using dynamic 
programming .  (RGPV DEC 2016) 

Object:      1             2         3           4 
Weight:     4             7         5           3 
Profit:       $40      $42       $25       $12 

 

In this problem  we have  maximum capacity is 10.  
problem solved by tabulation method for this we have to use following 

V[i,w]= Max[V(i-1,w), v[(i-1,w-w(i))+p(i)]] 

problems are retained in a table, 
problem is 

The divide and conquer principle solve a large problem, by breaking it up into smaller 
which can be solved independently. In dynamic programming this principle 

is carried to an extreme: when we don't know exactly which smaller problems to solve, 
we simply solve them all, then store the answers away in a table to be used later in 

ger problems. Care is to be taken to avoid recomputing previously computed 
values, otherwise the recursive program will have prohibitive complexity. In some 
cases, the solution can be improved and in other cases, the dynamic programming 

Dynamic programming and Greedy strategy both are used for solving optimization 
problem. Optimization problem are those which require either minimum or maximum 
result. In greedy, we have predefined method like Prims, Kruskals but in dynamic 
programming to find all possible solution and pickup the best solution, but its time 

In greedy method decision takes in one time and follow the procedure. In dynamic 
mming based on 

The Knapsack problem is an optimization problem, where  constrained is the 
k. Given a set of object 

The knapsack problem is  an example of  a combinational optimization problem, a 
nd computer science about finding the optimal object among a 

set of objects. In 0/1 knapsack problem objects are not divisible i.e. you can not break 
fan, light, computer, washing 

Solve the following instance of 0/1 knapsack problem using dynamic 

problem solved by tabulation method for this we have to use following 
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Where     
i-  is the index of object(row number)
w- weight of object 
p- profit of object 
 
In the table arrange the weight in increasing order and their profit and 
object. 
 
                      W---->  1      2     3       4      5      6      7      8    
       Pi    Wi    Object 

12 3 1 0 0 12 

40 4 2 0 0 12 

25 5 3 0 0 12 

42 7 4 0 0 12 
 
*In first row weight of first object is 3 and profit is 12. In this row we 
object so maximum profit is 12 filled up to last column.
 
*In second row weight is 4 and profit is 40. but in this row we have two object first 
object weight is 3 and second object weight is 4. So total weight is 7 and total profit is 
52, filled from 7th column to last column.  
  
*Remaining entries filled by above formula:
 
Suppose we have to find value of  V[3,7]
V[i,w]= Max[V(i-1,w), v[(i -
V[3,7]=Max[V(2,7),v[(2,7-5)+25]]
V[3,7]= Max[52,V[(2,2+25)]]
V[3,7]= Max[52,[0+25]] 
V[3,7]= Max[52,25] 
So Maximum value of V[3,7] is 52. 
Final solution : 
Highest profit is 65 
How to know which object should be included (from Bottom to top in the table)
*Highest profit is 65. 65   present in last and seco
(3rd object) is included. Profit of this object is 25 so remaining profit is 65
*40 is available in 3rd and 2nd

object(1st object) is included in knapsack, profit of this object is 40, so remaining profit 
is 40-40=0. 
 
Object that is included 1,3  and profit is 65.
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is the index of object(row number) 

In the table arrange the weight in increasing order and their profit and 

>  1      2     3       4      5      6      7      8     9    10 

 12 12 12 12 12 12 12 

 40 40 40 52 52 52 52 

 40 40 40 52 52 65 65 

 40 40 40 52 52 65 65 

*In first row weight of first object is 3 and profit is 12. In this row we have only one 
object so maximum profit is 12 filled up to last column. 

*In second row weight is 4 and profit is 40. but in this row we have two object first 
object weight is 3 and second object weight is 4. So total weight is 7 and total profit is 

column to last column.   

*Remaining entries filled by above formula: 

Suppose we have to find value of  V[3,7] 
-1,w-w(i))+p(i)]] 
5)+25]] 

V[3,7]= Max[52,V[(2,2+25)]] 

So Maximum value of V[3,7] is 52. Similarly find the remaining values. 

How to know which object should be included (from Bottom to top in the table) 
*Highest profit is 65. 65   present in last and second last row. So second last row object 

object) is included. Profit of this object is 25 so remaining profit is 65-25=40
nd row, 3rd row object is already included so 2

object) is included in knapsack, profit of this object is 40, so remaining profit 

Object that is included 1,3  and profit is 65. 

In the table arrange the weight in increasing order and their profit and 

 

have only one 

*In second row weight is 4 and profit is 40. but in this row we have two object first 
object weight is 3 and second object weight is 4. So total weight is 7 and total profit is 

 
nd last row. So second last row object 

25=40 
row object is already included so 2nd row 

object) is included in knapsack, profit of this object is 40, so remaining profit 
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This problem is to find an arrangement of N queens on a chess board, such that no 
queen can attack any other queens on the board.

The chess queens can attack in any direction as 
diagonal way. 

A binary matrix is used to display the positions of N Queens, where no queens can 
attack other queens. 

Input and Output 
Input: 
The size of a chess board. Generally, it is 8. as (8 x 8 is the size of a 
Output: 
The matrix that represents in which row and column the N Queens can be placed.
If the solution does not exist, it will return false.
 
1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
 
In this output, the value 1 indicates the correct p lace for 
the queens. 
The 0 denotes the blank spaces on the chess board.
Algorithm 

isValid(board, row, col) 

Input: The chess board, row and the column of the board.

Output: True when placing a queen in row and place position is a valid or not.

Begin 
   if there is a queen at the left of current col, then
      return false 
   if there is a queen at the left upper diagonal, then
      return false 
   if there is a queen at the left lower diagonal, then
      return false; 
   return true //otherwise it is valid place
End 

solveNQueen(board, col) 

Input: The chess board, the col where the queen is trying to be placed.

Output: The position matrix where queens are placed.

Begin 
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N Queen Problem 

This problem is to find an arrangement of N queens on a chess board, such that no 
queen can attack any other queens on the board. 

The chess queens can attack in any direction as horizontal, vertical, horizontal and 

A binary matrix is used to display the positions of N Queens, where no queens can 

The size of a chess board. Generally, it is 8. as (8 x 8 is the size of a normal chess board.)

The matrix that represents in which row and column the N Queens can be placed. 
If the solution does not exist, it will return false. 

In this output, the value 1 indicates the correct p lace for 

The 0 denotes the blank spaces on the chess board.  

The chess board, row and the column of the board. 

True when placing a queen in row and place position is a valid or not. 

if there is a queen at the left of current col, then 

if there is a queen at the left upper diagonal, then 

n at the left lower diagonal, then 

return true //otherwise it is valid place 

The chess board, the col where the queen is trying to be placed. 

The position matrix where queens are placed. 

This problem is to find an arrangement of N queens on a chess board, such that no 

horizontal, vertical, horizontal and 

A binary matrix is used to display the positions of N Queens, where no queens can 

normal chess board.) 

In this output, the value 1 indicates the correct p lace for 
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   if all columns are filled, then 
      return true 
   for each row of the board, do 
      if isValid(board, i, col), then 
         set queen at place (i, col) in the board
         if solveNQueen(board, col+1) = true, then
            return true 
         otherwise remove queen from place (i, col) from board.
   done 
   return false 
End 
Source Code (C++) 
#include<iostream> 
using namespace std; 
#define N 8 
 
void printBoard(int board[N][N]) {
   for (int i = 0; i < N; i++) { 
      for (int j = 0; j < N; j++) 
         cout << board[i][j] << " "; 
      cout << endl; 
   } 
} 
 
bool isValid(int board[N][N], int row, int col) {
   for (int i = 0; i < col; i++)    //check whether there is queen in the left or not
      if (board[row][i]) 
         return false; 
   for (int i=row, j=col; i>=0 && j>=0; i
      if (board[i][j])       //check whether there is queen in the left upper diagonal or not
         return false; 
   for (int i=row, j=col; j>=0 && i<N; i++, j
      if (board[i][j])      //check whether there is queen in the left lower diagonal or not
         return false; 
   return true; 
} 
 
bool solveNQueen(int board[N][N], int col) {
   if (col >= N)           //when N queens are placed successfully
      return true; 
   for (int i = 0; i < N; i++) {     //for each row, check placing of queen is possible or not
      if (isValid(board, i, col) ) { 
         board[i][col] = 1;      //if validate, place the queen at place (i, col)
         if ( solveNQueen(board, col + 1)) 
            return true; 
                    
         board[i][col] = 0;        //When no place is vacant remove that queen
      } 
   } 
   return false;       //when no possible order is found
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set queen at place (i, col) in the board 
if solveNQueen(board, col+1) = true, then 

otherwise remove queen from place (i, col) from board. 

void printBoard(int board[N][N]) { 

 

bool isValid(int board[N][N], int row, int col) { 
//check whether there is queen in the left or not 

for (int i=row, j=col; i>=0 && j>=0; i--, j--) 
//check whether there is queen in the left upper diagonal or not

for (int i=row, j=col; j>=0 && i<N; i++, j--) 
whether there is queen in the left lower diagonal or not

bool solveNQueen(int board[N][N], int col) { 
//when N queens are placed successfully 

//for each row, check placing of queen is possible or not

//if validate, place the queen at place (i, col) 
if ( solveNQueen(board, col + 1))    //Go for the other columns recursively 

//When no place is vacant remove that queen 

//when no possible order is found 

//check whether there is queen in the left upper diagonal or not 

whether there is queen in the left lower diagonal or not 

//for each row, check placing of queen is possible or not 

 



         LAKSHMI NARAIN COLLEGE OF TECHNOLOGY, BHOPAL

COMPUTER SCIENCE & ENGINEERING DEPARTMENT

} 
 
bool checkSolution() { 
   int board[N][N]; 
   for(int i = 0; i<N; i++) 
      for(int j = 0; j<N; j++) 
         board[i][j] = 0;      //set all elements to 0
                
   if ( solveNQueen(board, 0) == false ) 
   {     //starting from 0th column
      cout << "Solution does not exist";
      return false; 
   } 
   printBoard(board); 
   return true; 
} 
 
int main() { 
   checkSolution(); 
}  
Output 
1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 1 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0  
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//set all elements to 0 

if ( solveNQueen(board, 0) == false )  
//starting from 0th column 

cout << "Solution does not exist"; 



 

 

Branch and bound Technique 
 
A branch and bound algorithm is an optimization technique to get an optimal solution to the problem. It 
looks for the best solution for a given problem in the entire space of the solution. The bounds in the 
function to be optimized are merged with the value of the latest best solution. It allows the algorithm to 
find parts of the solution space completely. A branch and bound algorithm is an optimization technique 
to get an optimal solution to the problem. It looks for the best solution for a given problem in the entire 
space of the solution. The bounds in the function to be optimized are merged with the value of the latest 
best solution. It allows the algorithm to find parts of the solution space completely. 
 

Problem Statement 
A traveler needs to visit all the cities from a list, where distances between all the cities are known and 
each city should be visited just once. What is the shortest possible route that he visits each city exactly 
once and returns to the origin city? 

Solution 

Travelling salesman problem is the most notorious computational problem. We can use 

brute-force approach to evaluate every possible tour and select the best one. 

For n number of vertices in a graph, there are (n - 1)! number of possibilities. 

Instead of brute-force using dynamic programming approach, the solution can be 

obtained in lesser time, though there is no polynomial time algorithm. 

Let us consider a graph G = (V, E), where V is a set of cities and E is a set of 

weighted edges. An edge e(u, v) represents that vertices u and v are connected. 

Distance between vertex u and v is d(u, v), which should be non-negative. 

Suppose we have started at city 1 and after visiting some cities now we are in 

city j. Hence, this is a partial tour. We certainly need to know j, since this will 

determine which cities are most convenient to visit next. We also need to know all 

the cities visited so far, so that we don't repeat any of them. Hence, this is an 

appropriate sub-problem. 

For a subset of cities S Є {1, 2, 3, ... , n} that includes 1, and j Є S, let C(S, 

j) be the length of the shortest path visiting each node in S exactly once, 

starting at 1 and ending at j. 

When |S| > 1, we define C(S, 1) = ∝ since the path cannot start and end at 1. 

Now, let express C(S, j) in terms of smaller sub-problems. We need to start 

at 1 and end at j. We should select the next city in such a way that  

C(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)where i∈S 

and i≠j        

Algorithm: TravelingAlgorithm: TravelingAlgorithm: TravelingAlgorithm: Traveling----SalesmanSalesmanSalesmanSalesman----ProblemProblemProblemProblem  
C ({1}, 1) = 0  
for s = 2 to n do  
   for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  
      C (S, 1) = ∞  
   for all j Є S and j ≠ 1  
      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  
Return minj C ({1, 2, 3, …, n}, j) + d(j, i)  



 

 

 

Analysis 
There are at the most 2^n.n  sub-problems and each one takes linear time to solve. Therefore, the total 
running time is O(2^n.n^2). 

Example 

In the following example, we will illustrate the steps to solve the travelling salesman problem. 

 

From the above graph, the following table is prepared. 

 1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

S = Φ 

Cost(2,Φ,1)=d(2,1)=5 
Cost(3,Φ,1)=d(3,1)=6 
Cost(4,Φ,1)=d(4,1)=8 

S = 1 

Cost(i,s)=min{Cost(j,s–(j))+d[i,j]} 

Cost(2,{3},1)=d[2,3]+Cost(3,Φ,1)=9+6=15 
Cost(2,{4},1)=d[2,4]+Cost(4,Φ,1)=10+8=18 
Cost(3,{2},1)=d[3,2]+Cost(2,Φ,1)=13+5=18 
Cost(3,{4},1)=d[3,4]+Cost(4,Φ,1)=12+8=20 
Cost(4,{3},1)=d[4,3]+Cost(3,Φ,1)=9+6=15 
Cost(4,{2},1)=d[4,2]+Cost(2,Φ,1)=8+5=13 

S=2 



 

 

Cost(2,{3,4},1) =d[2,3]+Cost(3,{4},1)=9+20=29 
Cost(2,{3,4},1)=d[2,4]+Cost(4,{3},1)=10+15=25=25Cost(2,{3,4},1)=25 
Cost(2,{3,4},1)=d[2,3]+Cost(2,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=10+15=25 
 
 
Cost(3,{2,4},1)=d[3,2]+Cost(2,{4},1)=13+18=31 
Cost(3,{2,4},1)=d[3,4]+Cost(4,{2},1)=12+13=25=25Cost(3,{2,4},1) 

Cost(3,{2,4},1)=d[3,2]+Cost(2,{4},1)=13+18=31 

Cost(4,{2,3},1)= 

d[4,2]+Cost(2,{3},1)=8+15=23 

d[4,3]+Cost(3,{2},1)=9+18=27=23Cost(4,{2,3},1) 

d[3,2]+Cost(2,{3},1)=8+15=23 

S=3 

Cost(1,{2,3,4},1)= 

d[1,2]+Cost(2,{3,4},1)=10+25=35 

d[1,3]+Cost(3,{2,4},1)=15+25=40 

d[1,4]+Cost(4,{2,3},1)=20+23=43=35Cost(1,{2,3,4},1) 

d[1,2]+Cost(2,{3,4},1)=10+25=35 

d[1,3]+Cost(3,{2,4},1)=15+25=40 

d[1,4]+Cost(4,{2,3},1)=20+23=43 

 

The minimum cost path is 35. 

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s = 3, select the path 
from 1 to 2 (cost is 10) then go backwards. When s = 2, we get the minimum value for d [4, 2]. Select 
the path from 2 to 4 (cost is 10) then go backwards. 

When s = 1, we get the minimum value for d [4, 3]. Selecting path 4 to 3 (cost is 9), then we shall go 
to then go to s = Φ step. We get the minimum value for d [3, 1] (cost is 6). 

 
 
             
 
 
 
 
 


