_LNCTr LAKSHMI NARAIN COLLEGE OF TECHNOLOGY, BHOPAL
A e EL COLRGES COMPUTER SCIENCE & ENGINEERING DEPARTMENT

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL New Scheme
Based On AICTE Flexible Curricu
COMPUTER SCIENCE AND ENGINEERING |V-Semester

CS402 Analysis Design of Algorith

Topic Covered
Dynamic Programming, 0/1 Knapsack Problem, Branch and Bound,
N Queen problem

I ntroduction:

Dynamic programming is a name, coined by Richardinia in 1955. Dynami
programming, as greedy method, is a powerful algaridesign techniquthat can be
used when the solution to the problem may be vieagthe result of a sequence
decisions. In the greedy method we make irrevocdét@sions one at a time, usini
greedy criterion. However, in dynamic programming \examine the decisic
sgjuence to see whether an optimal decision sequeantins optimal decisic
subsequence.

When optimal decision sequences contain optimalsigr subsequences, we
establish recurrence equations, called dyn-programming recurrence equations, 1
enable us to solve the problem in an efficient \

Dynamic programming is based on the principle otimality (also coined b
Bellman). The principle of optimality states thatmatter whatever the initial state ¢
initial decision are, the remainingecision sequence must constitute an opt
decision sequence with regard to the state reguliom the first decision. Tt
principle implies that an optimal decision sequerscceomprised of optimal decisic
subsequences. Since the principle of optity may not hold for some formulations
some problems, it is necessary to verify that ésibold for the problem being solv
Dynamic programming cannot be applied when thisgyple does not hol

The steps in a dynamic programming solution
» Verify that the principle of optimality hols
» Set up the dynamiprogramming recurrence equati

» Solve the dynamiprogramming recurrence equations for the value hef
optimal solution.

* Perform a trace back step in which the solutioglfiis constricted.
Dynamic programming differs from the greedy mettgidce the greedy meth
produces only one feasible solution, which may aymot be optimal, while dynam
programming produces all possible -problems at most once, one of wh

ANORKIG TOWARDS BEING THE COMPUTER SCIENCE & ENGINEERING DEPARTMENT

LNCIE LAKSHMI NARAIN COLLEGE OF TECHNOLOGY, BHOPAL

GROUP OF COLLEGES

guaranteed to beptimal. Optimal solutions to s-problems are retained in a tak
thereby avoiding the work of recomputing the ansereery time a st-problem is
encountered

The divide and conquer principle solve a large fanak by breaking it up into small
problemswhich can be solved independently. In dynamic mogning this principle
is carried to an extreme: when we don't know eyagtlich smaller problems to solv
we simply solve them all, then store the answerayain a table to be used later
solving lager problems. Care is to be taken to avoid recomgyireviously compute
values, otherwise the recursive program will havehibitive complexity. In som
cases, the solution can be improved and in othses;athe dynamic programmi
technique is the best approach.

Dynamic programming and Greedy strategy both aee @isr solving optimizatiol
problem. Optimization problem are those which reg@ither minimum or maximui
result. In greedy, we have predefined method liken®, Kruskals but in dyrmic
programming to find all possible solution and pigkihne best solution, but its tin
consuming process.

In greedy method decision takes in one time anidwothe procedure. In dynam
programming in every stage to take the decisionnadyic progrmming based o
principal of optimality, problem can be solved legaence of decisic

0/1 Knapsack problem:

The Knapsack problem is an optimization problememghconstrained is tt
number of object that can be placed inside a feied knapsék. Given a set of obje:
with specific weight and profit(value), the aimdsget as much profit into tt
knapsack as possible given the wei

The knapsack problem is an example of a comlminatioptimization problem,
topic in mathematicsral computer science about finding the optimal dbgaaong ¢
set of objects. In 0/1 knapsack problem objectsnatedivisible i.e. you can not bre
an object, you either take an object or not, likgeots-fan, light, computer, washir
machine etc.

Example: Solve the following instance of 0/1 knapsack problasing dynami
programming . (RGPV DEC 201

Object: 1 2 3
Weight: 4 7 5
Profit: $40 42 $25 ¢
The capacity of Knapsack is 10

Solution:
In this problem we have maximum capacity is
problem solved by tabulation method for this we éndw use following
formula
VI[i,w]=Max[V(i-1,w), V[(i-1,w-w(i))+p()]]

LNCIE LAKSHMI NARAIN COLLEGE OF TECHNOLOGY, BHOPAL
GROUP OF COLLEGE§

ANORKIG TOWARDS BEING THE COMPUTER SCIENCE & ENGINEERING DEPARTMENT

Where

I- is the index of object(row numb
w- weight of object

p- profit of object

In the table arrange the weight in increasing o their profit an
object.

W--1 2 3 4 5 6 78 9 10
Pi Wi Obiject

12 3 1 0 0 12 12 12 12 12 12 12 12
40 4 2 0 0 1240 40 40 52 52 52 52
25 5 3 0 0 1240 40 40 52 52 65 65
42 7 4 0 0 12 40 40 4C 52 52 65 65

*In first row weight of first object is 3 and profis 12. In this row wehave only one
object so maximum profit is 12 filled up to lastwon.

*In second row weight is 4 and profit is 40. buttins row we have two object fir
object weight is 3 and second object weight isattddal weight is 7 and total profit
52, filled from 7" column to last column

*Remaining entries filled by above formt

Suppose we have to find value of V[

V[i,w]= Max[V(i-1,w), v[(i -1,w-w(i))+p(i)]]
V[3,7]=Max[V(2,7),v[(2,75)+25]]

V[3,7]= Max[52,V[(2,2+25)]

V[3,7]= Max[52,[0+25]]

V[3,7]= Max[52,25]

So Maximum value of V[3,7] is 5:Similarly find the remaining values.

Final solution :

Highest profit is 65

How to know which object should be included (fromt®m to top in the tabl
*Highest profit is 65. 65 present in last andand last row. So second last row obj
(3% object) is included. Profit of this object is 25mmaining profit is 6-25=4(

*40 is available in % and 2° row, 3% row object is already included s row
object(f' object) is included in knapsack, profit of this etfjis 40, so remaining pro
is 40-40=0.

Object that isincluded 1,3 and profit is 65.

L_MJCIF:sHMI NARAIN COLLEGE OF TECHNOLOGY, BHOPAL
GROUP OF COLLEGES_

ANORKIG TOWARDS BEING THE B2 COMPUTER SCIENCE & ENGINEERING DEPARTMENT

N Queen Problem

This problem is to find an arrangement of N queensa chess board, such that
gueen can attack any other queens on the |

The chess queens can attack in any directiohorizontal, vertical, horizontal ar
diagonal way.

A binary matrix is used to display the positionsNdfQueens, where no queens
attack other queens.

Input and Output

Input:

The size of a chess board. Generally, it is 88as{ is the size of normal chess boar:
Output:

The matrix that represents in which row and coluh&N Queens can be plac

If the solution does not exist, it will return fal

10000000
00000010
00001000
00000001
01000000
00010000
00000100
00100000

In this output, the value 1 indicates the correct p lace for
the queens.

The 0 denotes the blank spaces on the chess board.

Algorithm

isValid(board, row, col)

Input: The chessboard, row and the column of the board.
Output: True when placing a queen in row and place positi@valid or no

Begin
if there is a queen at the left of current coln
return false
if there is a queen at the left upper diagonah
return false
if there is a queeat the left lower diagonal, th
return false;
return true //otherwise it is valid ple
End

solveNQueen(board, col)
Input: The chess board, the col where the queen is tigifg place«
Output: The position matrix where queens are ple

Begin

- L_MJCIF:sHMI NARAIN COLLEGE OF TECHNOLOGY, BHOPAL
A e EL COLRGES COMPUTER SCIENCE & ENGINEERING DEPARTMENT

if all columns are filled, then
return true
for each row of the board, do
if isValid(board, i, col), then
set queen at place (i, col) in the bc
if solveNQueen(board, col+1) = true, tl
return true
otherwise remove queen from place (i, col) fromrbc
done
return false
End
Sour ce Code (C++)
#include<iostream>
using namespace std;
#define N 8

void printBoard(int board[N][N])
for (inti=0;i<N;i++){
for (intj=0;) <N; j++)
cout << board[i][j] << " ";
cout << endl;
}
}

bool isValid(int board[N][N], int row, int col)
for (inti=0;i<col; i++) //check whether there is queen in the left o
if (board[row]][i])
return false;
for (int i=row, j=col; i>=0 && j>=0; i--, j--)
if (board[i][j]) //check whether there is queen in the left uppagainal or nc
return false;
for (int i=row, j=col; j>=0 && i<N; i++, j--)
if (board[i][j]) //checkvhether there is queen in the left lower diagomaia
return false;
return true;

}

bool solveNQueen(int board[N][N], int col
if (col >=N) /lwhen N queens are placed success
return true;
for (inti=0;i<N;i++){ //for each row, check placing of queen is possiblao
if (isValid(board, i, col)) {
board[i][col] = 1; //if validate, place the queen at place (i,
if (solveNQueen(board, col +1 //Go for the other columns recursively
return true;

board[i][col] =0; //When no place is vacant remove that q

}

return false; //when no possible order is fol

L_MJCIF:sHMI NARAIN COLLEGE OF TECHNOLOGY, BHOPAL
a4l crouP OF COLLEGES

ANORKIG TOWARDS BEING THE B2 COMPUTER SCIENCE & ENGINEERING DEPARTMENT
}

bool checkSolution() {
int board[N][N];
for(inti=0; i<N; i++)
for(int j = 0; j<N; j++)
board[i][j] = 0; //set all elements tc

if (solveNQueen(board, 0) == fals
{ [Ilstarting from Oth colunr
cout << "Solution does not exis
return false;
}
printBoard(board);
return true;

}

int main() {
checkSolution();
}
Output
10000000
00000010
00001000
00000001
01000000
00010000
ooo000100
00100000

Branch and bound Technique

A branch and bound algorithm is an optimizatiorhteque to get an optimal solution to the problem. |
looks for the best solution for a given problenthe entire space of the solution. The bounds in the
function to be optimized are merged with the valtithe latest best solution. It allows the algamtto

find parts of the solution space completely. A lsfaand bound algorithm is an optimization technique
to get an optimal solution to the problem. It lodsthe best solution for a given problem in timgire
space of the solution. The bounds in the functobe optimized are merged with the value of theslat
best solution. It allows the algorithm to find maof the solution space completely.

Problem Statement

A traveler needs to visit all the cities from &,liwhere distances between all the cities are knamh
each city should be visited just once. What issthertest possible route that he visits each cigctyx
once and returns to the origin city?

Solution

Travelling salesman problem is the most notorious computational problem. We can use
brute—force approach to evaluate every possible tour and select the best one.
For n number of vertices in a graph, there are (n — 1)! number of possibilities.
Instead of brute—force using dynamic programming approach, the solution can be
obtained in lesser time, though there is no polynomial time algorithm.

Let us consider a graph ¢ = (V, E), where V is a set of cities and £ is a set of
weighted edges. An edge e(u, v) represents that vertices u and v are connected.
Distance between vertex v and v is d(u, v), which should be non—negative.

Suppose we have started at city 7 and after visiting some cities now we are in
city J. Hence, this is a partial tour. We certainly need to know J, since this will
determine which cities are most convenient to visit next. We also need to know all
the cities visited so far, so that we don’t repeat any of them. Hence, this is an
appropriate sub—problem.

For a subset of cities S & {1, 2, 3 ... , nt that includes 7, and 7 £ S, let C(S,
j) be the length of the shortest path visiting each node in S exactly once,
starting at / and ending at .

When |S| > 1, we define C(S, 1) = o< since the path cannot start and end at L.

Now, let express C(S, j) in terms of smaller sub-problems. We need to start
at / and end at j. We should select the next city in such a way that
C(S, j)=minC(S—{j}, i)+d (i, j)wherei €Sandi #* jc (S, j)=minC (s—{j}, i)+d (i, j) where ies

and 1#j
Algorithm: Traveling—-Salesman—-Problem
cC{1}1)=0
fors=2tondo
for all subsets S €{1, 2, 3, ..., n} of size s and containing 1
C(s,)= o
for all € Sandj #1
C(S,)) =min{C (S —{j}, i) + d(i, j) for i €Sandi # i}

Return minj C ({1, 2, 3, ..., n}, j) + d(j, 1)

Analysis

There are at the most 2*n.n sub-problems and @aehakes linear time to solve. Therefore, thd tota
running time is O(2”n.n"2).

Example

In the following example, we will illustrate the steps to solve the travelling salesman problem.

From the above graph, the following table is prepared.

1 2 3 4
1 0 10 15 20
2 5 0 9 10
3 6 13 0 12
4 8 8 9 0
S=®
Cost(2¢,1)=d(2,1)=5
Cost(3¢,1)=d(3,1)=6
Cost(4¢,1)=d(4,1)=8
S=1

Cost(i,s)=min{Cost(j,s—(j))+d[i,j]}

Cost(2,{3},1)=d[2,3]+Cost(3D,1)=9+6=15
Cost(2,{4},1)=d[2,4]+Cost(4D,1)=10+8=18
Cost(3,{2},1)=d[3,2]+Cost(2D,1)=13+5=18
Cost(3,{4},1)=d[3,4]+Cost(4D,1)=12+8=20
Cost(4,{3},1)=d[4,3]+Cost(3p,1)=9+6=15
Cost(4,{2},1)=d[4,2]+Cost(2Dp,1)=8+5=13

S=2

Cost(2,{3,4},1) =d[2,3]+Cost(3,{4},1)=9+20=29
Cost(2,{3,4},1)=d[2,4]+Cost(4,{3},1)=10+15=25=250¢®,{3,4},1)=25
Cost(2,{3,4},1)=d[2,3]+Cost(2,{4},1)=9+20=29d[2,4Bost(4,{3},1)=10+15=25

Cost(3,{2,4},1)=d[3,2]+Cost(2,{4},1)=13+18=31
Cost(3,{2,4},1)=d[3,4]+Cost(4,{2},1)=12+13=25=250¢3,{2,4},1)

Cost(3,{2,4},1)=d[3,2]+Cost(2,{4},1)=13+18=31
Cost(4,{2,3},1)=

d[4,2]+Cost(2,{3},1)=8+15=23
d[4,3]+Cost(3,{2},1)=9+18=27=23Cost(4,{2,3},1)
d[3,2]+Cost(2,{3},1)=8+15=23

S=3

Cost(1,{2,3,4},1)=
d[1,2]+Cost(2,{3,4},1)=10+25=35
d[1,3]+Cost(3,{2,4},1)=15+25=40
d[1,4]+Cost(4,{2,3},1)=20+23=43=35Cost(1,{2,3,4},1)
d[1,2]+Cost(2,{3,4},1)=10+25=35
d[1,3]+Cost(3,{2,4},1)=15+25=40
d[1,4]+Cost(4,{2,3},1)=20+23=43

The minimum cost path is 35.

Start from cost {1, {2, 3, 4}, 1}, we get the miniim value for d [1, 2]. When s = 3, select the path
from 1 to 2 (cost is 10) then go backwards. Wher2s we get the minimum value for d [4, 2]. Select
the path from 2 to 4 (cost is 10) then go backwards

When s = 1, we get the minimum value for d [4,S3lecting path 4 to 3 (cost is 9), then we shall go
to then go to s @ step. We get the minimum value for d [3, 1] (desd).

® 0 0 0 0

