
Type checking 6th sem cse

Type Checking

Static Checking

◼ Static (Semantic) Checks
◼

◼

◼

◼

Type checks: operator applied to incompatible operands?

Flow of control checks: break (outside while?)

Uniqueness checks: labels in case statements

Name related checks: same name?

Token

Stream
Parser

Static

Checker

Intermediate

Code

Generator

Abstract

Syntax

Tree

Decorated

Abstract

Syntax

Tree

Intermediate

Code

2Winter 2010 based on CSE 504, Stony Brook University

Type Checking

3Winter 2010 based on CSE 504, Stony Brook University

◼

◼

Problem: Verify that a type of a construct
matches that expected by its context.

Examples:

◼

◼

◼

◼ mod requires integer operands (PASCAL)
* (dereferencing) – applied to a pointer
a[i] – indexing applied to an array

f(a1, a2, …, an) – function applied to correct
arguments.

◼ Information gathered by a type checker:
◼ Needed during code generation.

Type Systems

4Winter 2010 based on CSE 504, Stony Brook University

◼ A collection of rules for assigning type
expressions to the various parts of a program.

Based on: Syntactic constructs, notion of a type.

Example: If both operators of “+”, “-”, “*” are of
type integer then so is the result.

Type Checker: An implementation of a type
system.
◼ Syntax Directed.

Sound Type System: eliminates the need for
checking type errors during run time.

◼

◼

◼

◼

Type Expressions

◼ Implicit Assumptions:

◼ Each program has a type

◼ Types have a structure

Error
Names

Enumerations Sub-ranges
integerReal
Character

Basic Types

Boolean

Type Constructors

(strings)Arrays

Records

Sets

Pointers

Functions

Expressions

Statements

Void

Variables

5Winter 2010 based on CSE 504, Stony Brook University

Representation of Type

Expressions

→

x pointer

char char

(char x char)→ pointer (integer)

integer

→

x pointer

integerchar

Tree DAG
struct cell {

int info;

struct cell * next;

};

cell = record

x

x x

info int next ptr

6Winter 2010 based on CSE 504, Stony Brook University

Type Expressions Grammar

Type → int | float | char | …

| void

| error

| name

| variable

| array(size, Type)

| record((name, Type)*)

| pointer(Type)

| tuple((Type)*)

| fcn(Type, Type) (Type →Type)

Basic Types

Structured

Types

7Winter 2010 based on CSE 504, Stony Brook University

A Simple Typed Language

| E[E] | E ↑ | E (E)

8Winter 2010 based on CSE 504, Stony Brook University

Program →Declaration; Statement

Declaration →Declaration; Declaration

| id: Type

Statement →Statement; Statement

| id := Expression

| if Expression then Statement

| while Expression do Statement

Expression →literal | num | id

| Expression mod Expression

Type Checking Expressions

else float }

9Winter 2010 based on CSE 504, Stony Brook University

E →int_const { E.type = int }

E →float_const { E.type = float }

E →id

E →E1 + E2

{ E.type = sym_lookup(id.entry, type) }

{E.type = if E1.type {int, float} |

E2.type  {int, float})

then error

else if E1.type == E2.type == int

then int

Type Checking Expressions

10Winter 2010 based on CSE 504, Stony Brook University

E → E1

[E2]
{E.type = if E1.type = array(S, T) ∧

E2.type = int then T else error}

E →*E1
{E.type = if E1.type = pointer(T) then T

else error}

{E.type = pointer(E1.type)}E →&E1

E →E1(E2) {E.type = if (E1.type = fcn(S, T) ∧

E2.type = S, then T else error}

E →(E1, E2) {E.type = tuple(E1.type, E2.type)}

Type Checking Statements

11Winter 2010 based on CSE 504, Stony Brook University

S →id := E {S.type := if id.type = E.type

then void else error}

{S.type := if E.type = boolean

then S1.type else error}

{S.type := if E.type = boolean

then S1.type}

S →if E then S1

S →while E do S1

S →S1; S2 {S.type := if S1.type = void ∧

S2.type = void then void else error}

Equivalence of Type

12Winter 2010 based on CSE 504, Stony Brook University

Expressions
Problem: When in E1.type = E2.type?

◼

◼ We need a precise definition for type equivalence
Interaction between type equivalence and type
representation

Example: type vector = array [1..10] of real type weight =
array [1..10] of real var x, y: vector; z: weight

Name Equivalence: When they have the same name.
◼ x, y have the same type; z has a different type.

Structural Equivalence: When they have the same
structure.
◼ x, y, z have the same type.

Structural Equivalence

13Winter 2010 based on CSE 504, Stony Brook University

◼ Definition: by Induction
◼ Same basic type

Same constructor applied to SE Type

Same DAG Representation

(basis)

(induction step)◼

◼

◼ In Practice: modifications are needed
◼ Do not include array bounds – when they are passed as

parameters

Other applied representations (More compact)◼

◼ Can be applied to: Tree/ DAG
◼ Does not check for cycles

Later improve it.◼

Algorithm Testing

14Winter 2010 based on CSE 504, Stony Brook University

Structural Equivalence

function sequiv(s, t):boolean
{ if (s ∧t are of the same basic type) return true;

if (s = array(s1, s2) ∧t = array(t1, t2))

return sequiv(s1, t1) ∧sequiv(s2, t2);

if (s = tuple(s1, s2) ∧t = tuple(t1, t2))

return sequiv(s1, t1) ∧sequiv(s2, t2);

if (s = fcn(s1, s2) ∧t = fcn(t1, t2))

return sequiv(s1, t1) ∧sequiv(s2, t2);

if (s = pointer(s1) ∧t = pointer(t1))

return sequiv(s1, t1);

}

Recursive Types

Where: Linked Lists, Trees, etc.

How: records containing pointers to similar records

Example: type link = ↑ cell;

cell = record info: int; next = link end

Representation:
cell = record

x

x x

info int next ptr

cell = record

x

x x

info int next ptr

cellDAG with Names

15Winter 2010 based on CSE 504, Stony Brook University

Substituting names out (cycles)

Recursive Types in C

16Winter 2010 based on CSE 504, Stony Brook University

◼ C Policy: avoid cycles in type graphs by:
◼ Using structural equivalence for all types
◼ Except for records →name equivalence

◼ Example:
◼ struct cell {int info; struct cell * next;}

◼ Name use: name cell becomes part of the type of
the record.
◼ Use the acyclic representation

Names declared before use – except for pointers to
records.
Cycles – potential due to pointers in records

Testing for structural equivalence stops when a record
constructor is reached ~ same named record type?

◼

◼

◼

Overloading Functions &

17Winter 2010 based on CSE 504, Stony Brook University

Operators

◼ Overloaded Symbol: one that has different
meanings depending on its context

Example: Addition operator +

Resolving (operator identification): overloading is
resolved when a unique meaning is determined.

Context: it is not always possible to resolve
overloading by looking only the arguments of a
function

◼

◼

◼

◼

◼ Set of possible types
Context (inherited attribute) necessary

Overloading Example

18Winter 2010 based on CSE 504, Stony Brook University

function “*” (i, j: integer) return complex;

function “*” (x, y: complex) return complex;

* Has the following types:

fcn(tuple(integer, integer), integer)

fcn(tuple(integer, integer), complex)

fcn(tuple(complex, complex), complex)

int i, j;

k = i * j;

