Type checking 6™ sem cse

S

Type Checking

Wsmﬂc Checking

Abstract . Decorated | Thtepmediate _
Token Svntax Static Abstract Intermediate
» Parser Y e thaudN Code >
Stream Tree Checker | Syntax Code
Tree Generator

= Static (Semantic) Checks

Type checks: operator applied to incompatible operands?
Flow of control checks: break (outside while?)
Uniqueness checks: labels in case statements

= Name related checks: same name?

Winter 2010 based on CSE 504, Stony Brook University

Type Checking

" Problem: Verify that a type of a construct
matches that expected by its context.
" Examples:
= mod requires integer operands (PASCAL)
= * (dereferencing) - applied to a pointer
= a[i] - indexing applied to an array
= f(al, a2, ..., an) - function applied to correct
arguments.
* Information gathered by a type checker:
= Needed during code generation.

Winter 2010 based on CSE 504, Stony Brook University

Type Systems

Winter 2010

A collection of rules for assigning type
expressions to the various parts of a program.

Based on: Syntactic constructs, notion of a type.

w n “w n 11} "
4 ow_n vk

Example: If both operators of "+", "-", "*" are of
type integer then so is the result.

Type Checker: An implementation of a type
system.

= Syntax Directed.

Sound Type System: eliminates the need for
checking type errors during run time.

based on CSE 504, Stony Brook University

W Type Expressions

= Implicit Assumptions:

Winter 2010

= Each program has a type —
= Types have a structure

Basic Types
Boolean Character
Real integer

Enumerations syb-ranges

Void E
_ rror
Variables Names

— Expressions

— Statements

Type Constructors
Arrays (strings)
Records

Sets

Pointers

Functions

based on CSE 504, Stony Brook University

Representation of Type
%M Expressions

p 4 pointer Q pointer v -
char char integer char integer info int next ptr —
| | int info;

| struct cell * next;
(char x char)- pointer (integer)):

Winter 2010 based on CSE 504, Stony Brook University

w Type Expressions Grammar

Type > int | float | char | ...)
void

error > Basic Types
hame

variable J
array(size, Type) “
record((hame, Type)*)
pointer(Type)

tuple((Type)*)

fen(Type, Type) (Type >Type)

Structured
> Types

Winter 2010 based on CSE 504, Stony Brook University 7

A Simple Typed Language

rogram ->Declaration; Statement
Declaration >Declaration; Declaration
| id: Type
Statement ->Statement; Statement
id := Expression
if Expression then Statement
while Expression do Statement
Expression ->literal | num | id

| Expression mod Expression
| E[E]| E 1| E (E)

Winter 2010 based on CSE 504, Stony Brook University

wType Checking Expressions

E >int_const {Etype=int}
E >float_const { E.type = float }
E >id { E.type = sym_lookup(id.entry, type) }

E 9E1 + E2 {E.type = if E;.type £{int, float} |
E,.type ¢ {int, float})

then error

else if E;.type == E,.type == int
then int

else float }

Winter 2010 based on CSE 504, Stony Brook University

w Type Checking Expressions

E— E1 {E.type = if E;.type = array(S, T) A
[EZ] E,.type = int then T else error}

E >*E {E.type = if E;.type = pointer(T) then T
1

else error}
E >4&E;, {E.type = pointer(E,.type)}

E 9E1(E2) {E.type = if (E;.type = fen(S, T) A
E,.type = S, then T else error}

E Q(El, Ez) {E.type = tuple(E;.type, E,.type)}

Winter 2010 based on CSE 504, Stony Brook University 10

w Type Checking Statements

S->id:-E {S.type := if id.type = E.type
then void else error}
S >if E then 51 {S.type := if E.type = boolean
then Sl.type else error}
S >while E do S1 {S.type = if E.type = boolean
M SlType}
S 951} 52 {S.type := if S;.type = void A

S,.type = void then void else error}

Winter 2010 based on CSE 504, Stony Brook University 11

Equivalence of Type
W Expressions

Problem: When in E;.type = E,.type?
= We need a precise definition for type equivalence

= Interaction between type equivalence and type
representation

Example: type vector = array [1..10] of real type weight =
array [1..10] of real var x, y: vector; z: weight

Name Equivalence: When they have the same name.
= X, Y have the same type; z has a different type.

Structural Equivalence: When they have the same
structure.

= X,Y, Z have the same type.

Winter 2010 based on CSE 504, Stony Brook University 12

Structural Equivalence

= Definition: by Induction

= Same basic type (basis)
= Same constructor applied to SE Type (induction step)

= Same DAG Representation

= Tnh Practice: modifications are needed

= Do not include array bounds - when they are passed as
parameters

= Other applied representations (More compact)
= Can be applied to: Tree/ DAG

= Does not check for cycles
= Later improve it.

Winter 2010 based on CSE 504, Stony Brook University

13

Algorithm Testing
Structural Equivalence

function sequiv(s, t): boolean

{ if (s At are of the same basic type) return true;

if (s = array(sy, s,) At = array(ty, t5))
return sequiv(s,, t,) Asequiv(s,,t,):
if (s = tuple(sy, s,) At = tuple(ty, t5))
return sequiv(sy, t1) Asequiv(s,, 1,):
if (s = fen(sy, s,) At = fen(ty, t5))
return sequiv(s;, t;) Asequiv(s,,t,);
if (s = pointer(s;) At = pointer(t,))

return sequiv(sy,t,);

Winter 2010 based on CSE 504, Stony Brook University

14

Recursive Types

Where: Linked Lists, Trees, etc.
How: records containing pointers to similar records
Example: type link = 1 cell;

cell = record info: int; next = link end

Representation:

cell = record cell = record <——

/\ /\

info int next ptr info int next ptr

DAG with Names cell Substituting names out (cycles)

Winter 2010 based on CSE 504, Stony Brook University

Recursive Types in C

= C Policy: avoid cycles in type graphs by:
= Using structural equivalence for all types
= Except for records ->name equivalence
= Example:
m struct cell {int info; struct cell * next;}
" Name use: name cell becomes part of the type of
the record.
= Use the acyclic representation

= Names declared before use - except for pointers to
records.

= Cycles - potential due to pointers in records

= Testing for structural equivalence stops when a record
constructor is reached ~ same named record type?

Winter 2010 based on CSE 504, Stony Brook University 16

Overloading Functions &

W Operators

Winter 2010

Overloaded Symbol: one that has different
meanings depending on its context

Example: Addition operator +

Resolving (operator identification): overloading is
resolved when a unique meaning is determined.

Context: it is not always possible to resolve
overloading by looking only the arguments of a
function

= Set of possible types
= Context (inherited attribute) necessary

based on CSE 504, Stony Brook University 17

Overloading Example

function "*" (i, j: integer) return complex;

function "*" (x, y: complex) return complex;

* Has the following types:

fen(tup

fen(tup

fen(tup
int i, j;
kK=i*j

Winter 2010

e(integer, integer), integer)
e(integer, integer), complex)
e(complex, complex), complex)

based on CSE 504, Stony Brook University

18

