
Type checking 6th sem cse

Type Checking



Static Checking

◼ Static (Semantic) Checks
◼

◼

◼

◼

Type checks: operator applied to incompatible operands?  

Flow of control checks: break (outside while?)  

Uniqueness checks: labels in case statements

Name related checks: same name?
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Type Checking
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◼

◼

Problem: Verify that a type of a construct  
matches that expected by its context.

Examples:

◼

◼

◼

◼ mod requires integer operands (PASCAL)
* (dereferencing) – applied to a pointer  
a[i] – indexing applied to an array

f(a1, a2, …, an) – function applied to correct  
arguments.

◼ Information gathered by a type checker:
◼ Needed during code generation.



Type Systems
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◼ A collection of rules for assigning type  
expressions to the various parts of a program.

Based on: Syntactic constructs, notion of a type.

Example: If both operators of “+”, “-”, “*” are of  
type integer then so is the result.

Type Checker: An implementation of a type  
system.
◼ Syntax Directed.

Sound Type System: eliminates the need for  
checking type errors during run time.

◼

◼

◼

◼



Type Expressions

◼ Implicit Assumptions:

◼ Each program has a type

◼ Types have a structure

Error  
Names

Enumerations Sub-ranges
integerReal
Character

Basic Types

Boolean

Type Constructors

(strings)Arrays  

Records  

Sets  

Pointers  

Functions

Expressions

Statements

Void  

Variables
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Representation of Type

Expressions

→

x pointer

char char

(char x char)→ pointer (integer)

integer

→

x pointer

integerchar

Tree DAG
struct cell {

int info;

struct cell * next;

};

cell = record

x

x x

info int next ptr
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Type Expressions Grammar

Type → int | float | char | …

| void

| error

| name

| variable

| array( size, Type)

| record( (name, Type)*)

| pointer( Type)

| tuple((Type)*)

| fcn(Type, Type) (Type →Type)

Basic Types

Structured  

Types
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A Simple Typed Language

| E[E] | E ↑ | E (E)
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Program →Declaration; Statement  

Declaration →Declaration; Declaration

| id: Type  

Statement →Statement; Statement

| id := Expression

| if Expression then Statement

| while Expression do Statement  

Expression →literal | num | id

| Expression mod Expression



Type Checking Expressions

else float }
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E →int_const { E.type = int }

E →float_const { E.type = float }

E →id

E →E1 + E2

{ E.type = sym_lookup(id.entry, type) }

{E.type = if E1.type {int, float} |

E2.type  {int, float})  

then error

else if E1.type == E2.type == int

then int



Type Checking Expressions
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E → E1

[E2]
{E.type = if E1.type = array(S, T) ∧

E2.type = int then T else error}

E →*E1
{E.type = if E1.type = pointer(T) then T  

else error}

{E.type = pointer(E1.type)}E →&E1

E →E1(E2) {E.type = if (E1.type = fcn(S, T) ∧

E2.type = S, then T else error}

E →(E1, E2) {E.type = tuple(E1.type, E2.type)}



Type Checking Statements
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S →id := E {S.type := if id.type = E.type  

then void else error}

{S.type := if E.type = boolean  

then S1.type else error}

{S.type := if E.type = boolean

then S1.type}

S →if E then S1

S →while E do S1

S →S1; S2 {S.type := if S1.type = void ∧

S2.type = void then void else error}



Equivalence of Type
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Expressions
Problem: When in E1.type = E2.type?

◼

◼ We need a precise definition for type equivalence 
Interaction between type equivalence and type
representation

Example: type vector = array [1..10] of real type weight =
array [1..10] of real var x, y: vector; z: weight

Name Equivalence: When they have the same name.
◼ x, y have the same type; z has a different type.

Structural Equivalence: When they have the same  
structure.
◼ x, y, z have the same type.



Structural Equivalence
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◼ Definition: by Induction
◼ Same basic type

Same constructor applied to SE Type  

Same DAG Representation

(basis)  

(induction step)◼

◼

◼ In Practice: modifications are needed
◼ Do not include array bounds – when they are passed as  

parameters

Other applied representations (More compact)◼

◼ Can be applied to: Tree/ DAG
◼ Does not check for cycles  

Later improve it.◼



Algorithm Testing
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Structural Equivalence

function sequiv(s, t):boolean
{ if (s ∧t are of the same basic type) return true;

if (s = array(s1, s2) ∧t = array(t1, t2))

return sequiv(s1, t1) ∧sequiv(s2, t2);

if (s = tuple(s1, s2) ∧t = tuple(t1, t2))

return sequiv(s1, t1) ∧sequiv(s2, t2);  

if (s = fcn(s1, s2) ∧t = fcn(t1, t2))

return sequiv(s1, t1) ∧sequiv(s2, t2);

if (s = pointer(s1) ∧t = pointer(t1))

return sequiv(s1, t1);

}



Recursive Types

Where: Linked Lists, Trees, etc.

How: records containing pointers to similar records

Example: type link = ↑ cell;

cell = record info: int; next = link end

Representation:
cell = record

x

x x

info int next ptr

cell = record

x

x x

info int next ptr

cellDAG with Names
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Substituting names out (cycles)



Recursive Types in C
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◼ C Policy: avoid cycles in type graphs by:
◼ Using structural equivalence for all types
◼ Except for records →name equivalence

◼ Example:
◼ struct cell {int info; struct cell * next;}

◼ Name use: name cell becomes part of the type of  
the record.
◼ Use the acyclic representation

Names declared before use – except for pointers to  
records.
Cycles – potential due to pointers in records

Testing for structural equivalence stops when a record  
constructor is reached ~ same named record type?

◼

◼

◼



Overloading Functions &
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Operators

◼ Overloaded Symbol: one that has different  
meanings depending on its context

Example: Addition operator +

Resolving (operator identification): overloading is  
resolved when a unique meaning is determined.

Context: it is not always possible to resolve  
overloading by looking only the arguments of a  
function

◼

◼

◼

◼

◼ Set of possible types
Context (inherited attribute) necessary



Overloading Example
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function “*” (i, j: integer) return complex;  

function “*” (x, y: complex) return complex;

* Has the following types:  

fcn(tuple(integer, integer), integer)  

fcn(tuple(integer, integer), complex)  

fcn(tuple(complex, complex), complex)

int i, j;  

k = i * j;


